798 resultados para Firing
Resumo:
In this paper we study the effect of two distinct discrete delays on the dynamics of a Wilson-Cowan neural network. This activity based model describes the dynamics of synaptically interacting excitatory and inhibitory neuronal populations. We discuss the interpretation of the delays in the language of neurobiology and show how they can contribute to the generation of network rhythms. First we focus on the use of linear stability theory to show how to destabilise a fixed point, leading to the onset of oscillatory behaviour. Next we show for the choice of a Heaviside nonlinearity for the firing rate that such emergent oscillations can be either synchronous or anti-synchronous depending on whether inhibition or excitation dominates the network architecture. To probe the behaviour of smooth (sigmoidal) nonlinear firing rates we use a mixture of numerical bifurcation analysis and direct simulations, and uncover parameter windows that support chaotic behaviour. Finally we comment on the role of delays in the generation of bursting oscillations, and discuss natural extensions of the work in this paper.
Resumo:
The WTP produce many kinds of residue on your treatment stages, but the sludge is the more problematic from the final disposition point view. The actual rate of residue production deriving from technological evolution and the crescent population needs prevents the subtle equilibrium generation between consumption and recycling/reuse, creating problems of pollution resulting from inappropriate management of residues. Thus, is necessary achieve a new equilibrium between the grow from raw materials and energy and the residue generation. This equilibrium should be achieved by technical and economic feasibility of environmental supported models through recycling and reuse. The red ceramic industry stand out in residue absorption question as raw material due their clay mass heterogeneity, constituted by clay minerals and non-clay minerals with wide mineralogical variation, allowing residue inclusion which act like plastic or non-plastic materials, contributing to retain heavy metals contained in residues in the vitreous mass formed during the burning of the ceramic bodies. This work propose the study of the influence of incorporation of 25 wt.% sludge from wastewater treatment plant, according preliminary results, in the mass to produce ceramic bodies. The raw materials was characterized through chemical composition analyses by XRF, mineralogical analyses by XRD, thermal analyses by TG and DTA, Atterberg limits and thermodilatometry. Subsequently was composed the mass with 75 wt.% of clay and 25 wt.% of dried wastewater sludge from UFRN WWTP. Samples with 6,0 x 2,0 x 0,5 cm was produced with unidirectional compacting under pressure of 20MPa and burned in temperatures between 950 and 1,200ºC. After fired, the ceramic bodies have been submitted to physical and mechanical analyses through the measure of firing shrinkage, water absorption, density, apparent porosity and flexural strength; crystallographic analyses through XRD and microstructure analyses by SEM. The technological properties obtained was satisfactory to production of roof tiles with 25 wt.% at 1,200 ºC, but the production of others products at lower temperatures was not feasible
Resumo:
One of waste produced on large scale during the well drilling is the gravel drilling. There are techniques for the treatment of the same, but there isn t consensus on what are the best in terms of economic and environmental. One alternative for disposal of this waste and objective of this paper is the incorporation and immobilization of gravel clay matrix to assess their technological properties. The Raw Materials used were characterized by the following techniques: Chemical Analysis by X-ray fluorescence (XRF), mineralogical analysis by X-ray Diffraction (XRD), Grain Size Analysis (FA) and Thermal Analysis by Thermogravimetry (TG) and thermodiferential (DTA). After characterizing, samples were formulated in the following percentages: 0, 5, 10, 15, 25, 50, 75, 100% (weight) of gravel drilling, then the pieces were pressed, dried (110 ° C) and sintered at temperatures of 850, 950 and 1050 ° C. After sintering, samples were tested for water absorption, linear shrinkage, flexural strength, porosity, density, XRD and test color. The results concluded that the incorporation of gravel drilling is a viable possibility for solid masonry bricks and ceramic blocks manufacture at concentrations and firing temperature described here. Residue incorporation reduces an environmental problem, the cost of raw materials for manufacture of ceramic products
Resumo:
This masther dissertation presents a contribution to the study of 316L stainless steel sintering aiming to study their behavior in the milling process and the effect of isotherm temperature on the microstructure and mechanical properties. The 316L stainless steel is a widely used alloy for their high corrosion resistance property. However its application is limited by the low wear resistance consequence of its low hardness. In previous work we analyzed the effect of sintering additives as NbC and TaC. This study aims at deepening the understanding of sintering, analyzing the effect of grinding on particle size and microstructure and the effect of heating rate and soaking time on the sintered microstructure and on their microhardness. Were milled 316L powders with NbC at 1, 5 and 24 hours respectively. Particulates were characterized by SEM and . Cylindrical samples height and diameter of 5.0 mm were compacted at 700 MPa. The sintering conditions were: heating rate 5, 10 and 15◦C/min, temperature 1000, 1100, 1200, 1290 and 1300◦C, and soaking times of 30 and 60min. The cooling rate was maintained at 25◦C/min. All samples were sintered in a vacuum furnace. The sintered microstructure were characterized by optical and electron microscopy as well as density and microhardness. It was observed that the milling process has an influence on sintering, as well as temperature. The major effect was caused by firing temperature, followed by the grinding and heating rate. In this case, the highest rates correspond to higher sintering.
Desenvolvimento de bloco de vedação com barita na composição de partida para blindagem de radiação X
Resumo:
This work main objective is to study the use of bricks in barium X-rays rooms in order to contribute to the optimization of shielding rooms diagnosis. The work was based on experimental measurements of X-ray attenuation (40 to 150 kV), using ceramic seal bearing the incorporation of barium sulfat (BaSO4). Different formulations were studied in three different firing temperatures and evaluated for incorporation in the ceramic body. The composition of 20% of barite processed at a temperature of 950 ° C showed better physical and mechanical properties, is considered the most suitable for the purpose of this work. Were produced bricks sealing composition formulated based on that presented the best technological features. These blocks were tested physically as a building material and wall protective barrier. Properties such as visual, deviation from the square, face flatness, water absorption and compressive strength were evaluated for all the blocks produced. The behavior of this material as attenuator for X-rays was investigated by experimental results which take into account mortar manufacturers barium through the different strains and compared with the reference material (Pb). The simulation results indicated that the ceramic block barium shows excellent properties of attenuation equivalence lead taking into account the energy used in diagnostic X-ray
Resumo:
In the State Rio Grande do Norte, Brazil, the most significant deposits of minerals in the production of granite and pegmatite are Seridó region. Municipalities of Parelhas and Equador are the main responsible for the production of feldspar, quartz, kaolin and granite. The ceramic industries are always in search of competitiveness by investing in new products or improving existing techniques. The stoneware is a type of pottery that stands in the market because it presents technical and aesthetic characteristics superior to other existing products. Characteristics of the raw materials initially obtained with chemical analysis and mineralogical analysis are crucial in getting a product that satisfies the conditions in a manufacturing process and is, in principle, directly related to the firing cycle. This research aimed at developing new formulations for the mass production of ceramic stoneware. The raw materials initially characterized were feldspar, quartz, kaolin and granite. As part of the research was developed at the University of Aveiro, in Portugal, we used two clays used in the production of Portuguese ceramics. The raw material Brazilian and Portuguese and the final product, both in Portugal and Brazil, were analyzed for X-ray fluorescence, X-ray diffraction, granulometric analysis, dilatometric analysis, thermal analysis and analysis of scanning electron microscopy (MEV). The specimens prepared at the University of Aveiro (DECV) were sintered at 10000C and 12000C and the specimens prepared in UFRN were sintered at 10000C, 10500C, 11000C, 11500C, 12000C, 12500C and 13000C, but the best results and demonstrating the presence of the mineral mullite were at temperatures of 12000C, 12500C and 13000C. The results showed that the granite waste used may be considered raw material of excellent quality for use in the ceramic industry and coating floors and more accurately by the industry of stoneware. Physical and mechanical tests conducted on samples of the formulations F01 and F02 developed in UFRN showed a water absorption and mechanical strength suitable for the stoneware
Resumo:
The metalceramic crowns are usually used in dentistry because they provide a resistant structure due to its metallic base and its aesthetics from the porcelain that recovers this structure. To manufacture these crowns, a series of stages should be accomplished in the prosthetic laboratories, and many variables can influence its success. Changes in these variables cause alterations in the metallic alloy and in the porcelain, so, as consequence, in the adhesion between them. The composition of the metal alloy can be modified by recasting alloys, a common practice in some prosthetic laboratories. The aim of this paper is to make a systematic study investigating metalceramic crowns as well as analyzing the effect of recasting Ni-Cr alloys. Another variable which can influence the mechanism of metalceramic union is the temperature used in firing porcelain procedure. Each porcelain has to be fired in a fixed temperature which is determined by the manufacturer and its change can cause serious damages. This research simulate situations that may occur on laboratory procedures and observe their consequences in the quality of the metalceramic union. A scanning eletron microscopy and an optic microscopy were accomplish to analyse the metal-ceramic interface. No differences have been found when remelting alloys were used. The microhardness were similar in Ni-Cr alloys casted once, twice and three times. A wettability test was accomplished using a software developed at the Laboratório de Processamento de Materiais por Plasma, on the Universidade Federal do Rio Grande do Norte. No differences were found in the contact angle between the solid surface (metallic substratum) and the tangencial plane to the liquid surface (opaque). To analyse if the temperature of porcelain firing procedure could influence the contact area between metal and porcelain, a variation in its final temperature was achieve from 980° to 955°C. Once more, no differences have been found
Resumo:
Over recent years the structural ceramics industry in Brazil has found a very favorable market for growth. However, difficulties related to productivity and product quality are partially inhibiting this possible growth. An alternative for trying to solve these problems and, thus, provide the pottery industry the feasibility of full development, is the substitution of firewood used in the burning process by natural gas. In order to contribute to this process of technological innovation, this paper studies the effect of co-use of ceramic phyllite and kaolin waste on the properties of a clay matrix, verifying the possible benefits that these raw materials can give to the final product, as well as the possibility of such materials to reduce the heat load necessary to obtain products with equal or superior quality. The study was divided into two steps: characterization of materials and study of formulations. Two clays, a phyllite and a residue of kaolin were characterized by the following techniques: laser granulometry, plasticity index by Atterberg limits, X-ray fluorescence, X-ray diffraction, mineralogical composition by Rietveld, thermogravimetric and differential thermal analysis. To study the formulations, specifically for evaluation of technological properties of the parts, was performed an experimental model that combined planning involving a mixture of three components (standard mass x phyllite x kaolin waste) and a 23 factorial design with central point associated with thermal processing parameters. The experiment was performed with restricted strip-plot randomization. In total, 13 compositional points were investigated within the following constraints: phyllite ≤ 20% by weight, kaolin waste ≤ 40% by weight, and standard mass ≥ 60% by weight. The thermal parameters were used at the following levels: 750 and 950 °C to the firing temperature, 5 and 15 °C/min at the heating rate, 15 and 45min to the baseline. The results showed that the introduction of phyllite and/or kaolin waste in ceramic body produced a number of benefits in properties of the final product, such as: decreased absorption of water, apparent porosity and linear retraction at burn; besides the increase in apparent specific mass and mechanical properties of parts. The best results were obtained in the compositional points where the sum of the levels of kaolin waste and phyllite was maximal (40% by weight), as well as conditions which were used in firing temperatures of 950 °C. Regarding the prospect of savings in heat energy required to form the desired microstructure, the phyllite and the residue of kaolin, for having small particle sizes and constitutions mineralogical phases with the presence of fluxes, contributed to the optimization of the firing cycle.
Resumo:
The production of waste from urban and industrial activities is one of the factors of environmental contamination and has aroused attention of the scientific community, in the sense of its reuse. On the other hand, the city of Salvador/Ba, with approximately 262 channels, responsible for storm water runoff, produces every year, by the intervention of cleaning and clearing channels, a significant volume of sediments (dredged mud), and thus an appropriate methodology for their final destination. This study aims to assess the influence of incorporation of these tailings in arrays of clay for production of interlocked block ceramic, also known as ceramic paver. All the raw materials from the metropolitan region of Salvador (RMS) were characterized by x-ray fluorescence, x-ray diffraction, thermal analysis (TG and TDA), particle size analysis and dilatometry. With the use of statistical experimental planning technique, ternary diagram was defined in the study region and the analyzed formulations. The specimens were prepared with dimensions of 60x20x5mm³, by uniaxial pressing of 30 MPa and after sintering at temperatures of 900°, 1000º and 1100ºC the technological properties were evaluated: linear shrinkage, water absorption, apparent porosity, apparent specifies mass, flexural rupture and module. For the uniaxial compression strength used cylindrical probe body with Ø 50 mm. The standard mass (MP) was prepared with 90% by weight of clay and 10% by weight of Channel sediment (SCP), not being verified significant variations in the properties of the final product. With the incorporation of 10% by weight of manganese residue (PFM) and 10% by weight of the Ceramic waste (RCB) in the mass default, in addition to adjusting the plasticity due to less waste clay content, provided increased linear firing shrinkage, due the significant concentration of K2O, forming liquid phase at low temperature, contributing to decreased porosity and mechanical resistance, being 92,5 MPa maximum compressive strength verified. After extract test leachate and soluble, the piece containing 10% of the PFM, was classified as non-hazardous and inert material according to NBR10004/04 ABNT. The results showed the feasibility on using waste, SCP, RCB and PFM clay mass, at temperatures above 900ºC, paver ceramic production, according to the specifications of the technical standards, so that to exceed the 10% of the PFM, it becomes imperative to conduct studies of environmental impacts
Resumo:
To produce porcelain tiles fluxing agents are used in order to obtain a liquid phase during firing. This liquid phase fills the pores decreasing porosity, water absorption and contributes to material densification. In the porcelain tiles industry, feldspar is the main flux material used, with quantities ranging between 35 and 50%. Studies focus on the discovery of materials with flux characteristics that can reduce the consumption of feldspar by porcelain tiles industry. In this context, the coffee husk ashes, a residue obtained when coffee husks are burned to produce heat for the dryers during the processing of the green fruit, have as main chemical constituents potassium, calcium and magnesium, giving them characteristics of fluxing material. Brazil is the largest coffee producer in the world and is responsible for over 30% of the world s production. In this work a physical treatment of coffee husk ash was carried out in order to eliminate the organic matter and, after this, two by-products were obtained: residual wastes R1 and R2. Both residues were added separately as single fluxes and also in association with feldspar in mixtures with raw materials collected in a porcelain industry located in Dias d Ávila-Ba. The addition of these residues aimed to contribute to the reduction of the consumption of feldspar in the production of porcelain tiles. Specimens were produced with dimensions of 60 mm x 20 mm x 6 mm in an uniaxial die with compacting pressure of 45 MPa. The samples were heated to a temperature of 1200 °C, for 8 minutes. Tests were performed to characterize the raw materials by XRF, XRD, particle size analysis, DTA and TGA and, additionally, the results of the physical properties of water absorption, apparent porosity, linear shrinkage, density, dilatometry, flexural strength and SEM of sintered body were analyzed. Additions of less than 8% of the residue R1 contributed to the decrease of porosity, but the mechanical strength of the samples was not satisfactory. Additions of 5% the R2 residue contributed significantly to decrease the water absorption and apparent porosity, and also to increase the mechanical strength. Samples with addition of feldspar associated with the R2 residue, in proportions of 6.7% of R2 and 6.7% of feldspar, led to results of water absorption of 0.12% and mechanical strength of 46 MPa, having parameters normalized to the manufacture of porcelain stoneware tiles
Resumo:
Doctor of Philosophy in subject of Economics
Resumo:
Fuel cells are considered one of the most promising ways of converting electrical energy due to its high yield and by using hydrogen (as fuel) which is considered one of the most important source of clean energy for the future. Rare earths doped ceria has been widely investigated as an alternative material for the electrolyte of solid oxide fuel cells (SOFCs) due to its high ionic conductivity at low operating temperatures compared with the traditional electrolytes based on stabilized zirconia. This work investigates the effect of gallium oxide (Gallia) as a sintering aid in Eu doped ceria ceramic electrolytes since this effect has already been investigated for Gd, Sm and Y doped ceria electrolytes. The desired goal with the use of a sintering aid is to reduce the sintering temperature aiming to produce dense ceramics. In this study we investigated the effects on densification, microstructure and ionic conduction caused by different molar fraction of the dopants europium (10, 15 and 20%) and gallium oxide (0.3, 0.6 and 0.9%) in samples sintered at 1300, 1350 and 1450 0 C. Samaria (10 and 20%) doped ceria samples sintered between 1350 and 1450 °C were used as reference. Samples were synthesized using the cation complexation method. The ceramics powders were characterized by XRF, XRD and SEM, while the sintered samples were investigated by its relative density, SEM and impedance spectroscopy. It was showed that gallia contents up to 0.6% act as excellent sintering aids in Eu doped ceria. Above this aid content, gallia addition does not promote significant increase in density of the ceramics. In Ga free samples the larger densification were accomplished with Eu 15% molar, effect expressed in the microstructure with higher grain growth although reduced and surrounded by many open pores. Relative densities greater than 95 % were obtained by sintering between 1300 and 1350 °C against the usual range 1500 - 1600 0 C. Samples containing 10% of Sm and 0.9% of Ga reached 96% of theoretical density by sintering at 1350 0 C for 3h, a gain compared to 97% achieved with 20% of Sm and 1% of Ga co-doped cerias sintered at 1450 0 C for 24 h as described in the literature. It is found that the addition of gallia in the Eu doped ceria has a positive effect on the grain conductivity and a negative one in the grain boundary conductivity resulting in a small decrease in the total conductivity which will not compromise its application as sintering aids in ceria based electrolytes. Typical total conductivity values at 600 and 700 °C, around 10 and 30 mS.cm -1 respectively were reached in this study. Samples with 15% of Eu and 0.9 % of Ga sintered at 1300 and 1350 °C showed relative densities greater than 96% and total conductivity (measured at 700 °C) between 20 and 33 mS.cm -1 . The simultaneous sintering of the electrolyte with the anode is one of the goals of research in materials for SOFCs. The results obtained in this study suggest that dense Eu and Ga co-doped ceria electrolytes with good ionic conductivity can be sintered simultaneously with the anode at temperatures below 1350 °C, the usual temperature for firing porous anode materials
Resumo:
Rio Grande do Norte State stands out as one great producer of structural clay of the brazilian northeastern. The Valley Assu ceramic tiles production stands out obtained from ilitics ball clays that abound in the region under study. Ceramics formulation and the design of experiments with mixture approach, has been applied for researchers, come as an important aid to decrease the number of experiments necessary to the optimization. In this context, the objective of this work is to evaluate the effects of the formulation, temperature and heating rate in the physical-mechanical properties of the red ceramic body used for roofing tile fabrication of the Valley Assu, using design of mixture experiments. Four clays samples used in two ceramics industry of the region were use as raw material and characterized by X-ray diffraction, chemical composition, differential thermal analysis (DTA), thermogravimetric analysis (TGA), particle size distribution analysis and plasticity techniques. Afterwards, they were defined initial molded bodies and made specimens were then prepared by uniaxial pressing at 25 MPa before firing at 850, 950 and 1050 ºC in a laboratory furnace, with heating rate in the proportions of 5, 10 e 15 ºC/min. The following tecnologicals properties were evaluated: linear firing shrinkage, water absorption and flexural strength. Results show that the temperature 1050 ºC and heating rate of 5 ºC/min was the best condition, therefore presented significance in all physical-mechanical properties. The model was accepted as valid based of the production of three new formulations with fractions mass diferents of the initial molded bodies and heated with temperature at 1050 ºC and heating rate of 5 ºC/min. Considering the formulation, temperature and heating rate as variables of the equations, another model was suggested, where from the aplication of design of experiments with mixtures was possible to get a best formulation, whose experimental error is the minor in relation to the too much formulations
Resumo:
The optical access engine integrated with the diagnostic and optical measurement techniques is a great platform for engine research because it provides clear visual access to the combustion chamber inside the engines. An optical access engine customized based on a 4-cylinder spark ignited direct injection (SIDI) production engine is located in the Advanced Power Systems Laboratories (APS LABS) at Michigan Technological University. This optical access engine inside the test cell has been set up for different engine research. In this report, two SAE papers in engine research utilizing the optical access engine are reviewed to gain basic understanding of the methodology. Though the optical engine in APS LABS is a little bit different from the engines used in the literature, the methodology in the papers provides guidelines for engine research through optical access engines. In addition, the optical access engine instrumentation including the test cell setup and the optical engine setup is described in detail in the report providing a solid record for later troubleshooting and reference. Finally, the motoring tests, firing tests and optical imaging experiment on the optical engine have been performed to validate the instrumentation. This report only describes so far the instrumentation of the optical engine in the APS LABS by April 2015.
Resumo:
Electrical synapses are composed of gap junctions, made from paired hemi-channels that allow for the transfer of current from one neuron to another. Gap junctions mediate electrical transmission in neurons, where they synchronize spiking and promote rapid transmission, thereby influencing the coordination, pattern, and frequency of firing. In the marine snail, Aplysia calfornica, two clusters of neuroendocrine bag cell neurons use electrical synapses to synchronize a 30-min burst of action potentials, known as the afterdischarge, which releases egg-laying hormone and induces reproduction. In culture, paired bag cell neurons present a junctional conductance that is non-rectifying and largely voltage-independent. During the afterdischarge, PKC is activated, which is known to increase voltage-gated Ca2+ current; yet, little is understood as to how this pathway impacts electrical transmission. The transfer of presynaptic spike-like waveforms (generated in voltage-clamp) to the postsynaptic cell (measured in current-clamp) was monitored with or without PKC activation. It was found that pretreatment with the PKC activator, phorbol-12-myristate-13-acetate (PMA), enhanced junctional conductance between bag cell neurons. Furthermore, in control, presynaptic action potential waveforms mainly evoked postsynaptic electrotonic potentials at both -60 and -40 mV. However, with PKC activation the presynaptic stimulus consistently elicited postsynaptic action potentials from resting potentials of -40 mV, and would occasionally result in firing from repetitive input at -60 mV. Moreover, to assess whether this enhanced electrical transmission genuinely reflects a greater junctional conductance or a change in postsynaptic responsiveness, a fast-phase junctional-like current was applied to single bag cell neurons. Neurons in PMA always fired action potentials in response to current injection as opposed to control, which were less likely to spike. This outcome did not change when the junctional-like current was artificially enhanced in control conditions. Also, in response to fast- and slow-phase electrotonic potential (ETP) waveforms, Ca2+ current was markedly larger in single PMA-treated neurons. These findings suggest that PKC activation may contribute to afterdischarge fidelity by recruiting postsynaptic Ca2+ current to promote synchronous network firing. Finally, Aplysia gap junction genes (innexins) were transfected into mouse N2A cells and characterized. This revealed a biophysical and pharmacological profile similar to native gap junctions.