855 resultados para Finishes in the construction
Resumo:
The figure of the coordinator in health and safety issues in the construction sector first appeared in our legislation through the incorporation of the European Directives (in our case Royal Decree 1627/97 on the minimum health and safety regulations in construction works), and is viewed differently in different countries of the European Union regarding the way they are hired and their role in the construction industry. Coordinating health and safety issues is also a management process that requires certain competencies that are not only based on technical or professional training, but which, taking account of the work environment, require the use of strategies and tools that are related to experience and personal skills. Through a piece of research that took account of expert opinions in the matter, we have found which competencies need to be possessed by the health and safety coordinator in order to improve the safety in the works they are coordinating. The conclusions of the analyses performed using the appropriate statistical methods (comparing means and multivariate analysis techniques), will enable training programmes to be designed and ensure that the health and safety coordinators selected have the competencies required to carry out their duties.
Resumo:
El objetivo principal de este trabajo de investigación es estudiar las propiedades del árido reciclado mixto para la fabricación de hormigón reciclado en aplicaciones no estructurales. Se ha realizado la caracterización completa de 35 muestras de áridos reciclados mixtos gruesos de distinta calidad, procedentes de 13 plantas de tratamiento diferentes de la geografía española. Se han estudiado las correlaciones que existen entre las diferentes propiedades, en particular, con la absorción de agua, el contenido de sulfatos y la composición. Se propone una clasificación de los áridos reciclados y se limita de forma indicativa el contenido de yeso para que una muestra de árido reciclado mixto cumpla con la limitación del 0,8% de los sulfatos solubles en ácido de la Instrucción EHE-08. Recycling of construction and demolition waste (CDW) has become a widespread concern in Spain for the last years, as a way to preserve natural resources and achieve a better control of waste disposal sites.Specific applications which make use of mixed recycled aggregates are of great importance, as this types of aggregates constitute the majority of the total production. Structural and non-structural concrete is one of the possible applications, being this the main goal of our study. This paper presents a study on the physical and chemical characteristics of mixed recycled aggregates which have been obtained from different CDW treatment plants of Spain. Correlations between the different properties were investigated in order to find criterions of acceptance for recycled aggregates to be used in concrete. The comparison between the properties offers the possibility of pre-selecting a great quantity of mixed recycled aggregates, these being suitable for either structural and non-structural concrete. The determination of water absorption and the gypsum content are good indicators in order to evaluate the quality of the mixed recycled aggregates for its application in the production of concrete.
Resumo:
The figure of the coordinator in health and safety issues in the construction sector first appeared in our legislation through the incorporation of the European Directives (in our case Royal Decree 1627/97 on the minimum health and safety regulations in construction works), and is viewed differently in different countries of the European Union regarding the way they are hired and their role in the construction industry. Coordinating health and safety issues is also a management process that requires certain competencies that are not only based on technical or professional training, but which, taking account of the work environment, require the use of strategies and tools that are related to experience and personal skills. Through a piece of research that took account of expert opinions in the matter, we have found which competencies need to be possessed by the health and safety coordinator in order to improve the safety in the works they are coordinating. The conclusions of the analyses performed using the appropriate statistical methods (comparing means and multivariate analysis techniques), will enable training programmes to be designed and ensure that the health and safety coordinators selected have the competencies required to carry out their duties.
Resumo:
The decision to build the Secondary Lining in Route Tunnels which are perforated using the New Austrian Tunnelling Method does not generally depend on reasons of structural strength. The paper discusses the implications of the issue as well as the pros and cons of the current alternative courses of action.
Resumo:
The Technofusion project involves the construction of a relevant set of scientific technical facilities in Madrid, providing new tools to fusion energy community.
Resumo:
The underground cellars of the Duero River basin are part of spread and damaged agricultural landscape which is in danger of disappearing. These architectural complexes are allocated next to small towns. Constructions are mostly dug in the ground with a gallery down or "barrel" strait through which you access the cave or cellar. This wider space is used to make and store wine. Observation and detection of the winery both on the outside and underground is essential to make an inventory of the rural heritage. Geodetection is a non-invasive technique, suitable to determinate with precision buried structures in the ground. The undertaken works include LIDAR survey techniques, GNSS and GPR obtained data. The results are used to identify with centimetric precision construction elements forming the winery. Graphic and cartographic obtained documents allow optimum visualization of the studied field and can be used in the reconstruction of the place.
Resumo:
Desde los años 60, crece en Europa y Estados Unidos la preocupación y la necesidad de mejorar los procesos de gerencia de los proyectos de construcción al volverse estos más complejos. Esto ha llevado a la continua aparición de nuevos profesionales desde la fecha citada hasta nuestros días. De ahí la complejidad de conocer las cualidades de cada uno de ellos, así como las funciones a realizar o la formación que deben tener para poder desarrollar el puesto de trabajo según el papel que desempeñan para cada actividad. Muchos agentes son los que pueden intervenir en la edificación, muchas son las funciones que llevan a cabo estos agentes, muchas son las habilidades que se necesitan para realizar estas misiones, y una buena gestión de la edificación es la que hay que desarrollar para lograr el gran éxito. El presente trabajo fin de máster, dirigido a arquitectos, arquitectos técnicos, ingenieros, abogados, economistas y todos los profesionales del sector inmobiliario y de la construcción, trata de resolver todas aquellas dudas sobre los diferentes sujetos que estarán presentes desde la definición del proyecto en la fase inicial hasta el final de la obra, pasando por las fases de pre-construcción, construcción y post-construcción. (ENGLISH VERSION) Since the 1960s, most construction projects have become more and more complex, and new concerns and necessities related to the management of a project have been on the rise in Europe and in the United States. Thence, the need for more specialized professionals in the field has become a common fact, as well as the inclusion of new curricular subjects in most building engineering studies. There are different agents that play a relevant role in a building project; some of them are expected to perform a highly specialized set of functions that require specific management skills for the work to be successful. This research work—aimed mainly at engineers, quantity surveyors, lawyers, economists, real estate and construction professionals—shows the major implications of the building construction process including both pre-tender/construction and post-tender/construction stages as far as the main expert agents are involved.
Resumo:
Of the south of Spain, near the province of Cordova, in a tributary of the Guadalquivir River it has been constructed during the years 2004 to 2007 the reservoir called El Arenoso. El Arenoso reservoir that belongs to Environment Ministry is destined to downstream Guadalquivir’s water supply and the general regulation of the river. The dam is located on the same name river and it is next to the Montoro’s municipal district, 41 km northeast of Cordova. The main work consists on an embankment dam, with central clay core, and slates and greywacke shoulders. The core is covered downstream with a filter material and upstream with a transition material. The dimensions of the dam are 80 m high, 1.480 m long at its crest, and it has been needed more than 3 million m3 of materials, creating a waterproof barrier able to keep 160 hm3 as a useful reservoir. In the zone of the core is located the chamber of valves with a horizontal clearance of 10 m and a vertical clearance of 14,517 m. The present article exposes the most important characteristics of project and construction, of valves chamber of the Arenoso reservoir.
Resumo:
The engineer must have sufficient theoretical knowledge to be applied to solve specific problems, with the necessary capacity to simplify these approaches, and taking into account factors such as speed, simplicity, quality and economy. In Geology, its ultimate goal is the exploration of the history of the geological events through observation, deduction, reasoning and, in exceptional cases by the direct underground exploration or experimentation. Experimentation is very limited in Geology. Reproduction laboratory of certain phenomena or geological processes is difficult because both time and space become a large scale. For this reason, some Earth Sciences are in a nearly descriptive stage whereas others closest to the experimental, Geophysics and Geochemistry, have assimilated progress experienced by the physics and chemistry. Thus, Anglo-Saxon countries clearly separate Engineering Geology from Geological Engineering, i.e. Applied Geology to the Geological Engineering concepts. Although there is a big professional overlap, the first one corresponds to scientific approach, while the last one corresponds to a technological one. Applied Geology to Engineering could be defined as the Science and Applied Geology to the design, construction and performance of engineering infrastructures in and field geology discipline. There has been much discussion on the primacy of theory over practice. Today prevails the exaggeration of practice, but you get good workers and routine and mediocre teachers. This idea forgets too that teaching problem is a problem of right balance. The approach of the action lines on the European Higher Education Area (EHEA) framework provides for such balance. Applied Geology subject represents the first real contact with the physical environment with the practice profession and works. Besides, the situation of the topic in the first trace of Study Plans for many students implies the link to other subjects and topics of the career (tunnels, dams, groundwater, roads, etc). This work analyses in depth the justification of such practical trips. It shows the criteria and methods of planning and the result which manifests itself in pupils. Once practical trips experience developed, the objective work tries to know about results and changes on student’s motivation in learning perspective. This is done regardless of the outcome of their knowledge achievements assessed properly and they are not subject to such work. For this objective, it has been designed a survey about their motivation before and after trip. Survey was made by the Unidad Docente de Geología Aplicada of the Departamento de Ingeniería y Morfología del Terreno (Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid). It was completely anonymous. Its objective was to collect the opinion of the student as a key agent of learning and teaching of the subject. All the work takes place under new teaching/learning criteria approach at the European framework in Higher Education. The results are exceptionally good with 90% of student’s participation and with very high scores in a number of questions as the itineraries, teachers and visited places (range of 4.5 to 4.2 in a 5 points scale). The majority of students are very satisfied (average of 4.5 in a 5 points scale).
Resumo:
This paper analyzed the building techniques based in the use of rammed earth in the Late Medieval fortifications in the province of Soria, Spain. The manorial castles of Serón de Nágima and Yanguas were built completely with rammed earth. However, these techinques are different. Through the study of the constructive signals, we can reconstruct the constructive process and made an hypothesis of the auxiliary scaffolding necessary for the construction. After, other four cases in which there is presence of rammed earth are described: Ágreda, Arcos de Jalón, Caracena and the tower of Martín González or castle of La Raya (the Border). Rammed earth is used in some secondary architectural elements and also as a filling of the masonry walls, but somtimes there are ancient rammed earth walls overlaid with stone masonry.
Resumo:
Durante el s. XIX las bóvedas tabicadas se desarrollan enormemente, ampliando sus usos a nuevos tipos y extendiendose por zonas dónde no se habían utilizado tradicionalmente. Además, comienza a utilizarse el cemento como aglomerante en lugar del yeso. En este contexto se realizan muchos ensayos sobre ellas, con el objeto de validar un sistema que resultaba nuevo por estas razones. Se estudian a continuación una serie de ensayos de resistencia realizados en Francia entre 1837 y 1865, todos ellos sobre bóvedas de tamaño y geometría similar: entre 4 y 5 m de luz, y con flecha 1/10 de la luz, un tipo muy empleado en ese momento para la construcción de fábricas. El primero de ellos busca medir experimentalmente el empuje de una de estas bóvedas, para cerrar un debate sobre la existencia o no de empujes en las bóvedas tabicadas. Los siguientes quieren obtener la carga de rotura de las bóvedas, con el objeto de construir después unas similares.
Resumo:
The idea that a building and consequently its structure is for a lifetime has stopped being a reference. CTE establishes that the life utility of a normal construction structure should be of 50years. If the time variable is introduced in the calculation of actions on structures, seems evident thatdifferent values can be used for a standard building, for a provisional structure with ≤ 10 years of life utility or for a monumental building with a life utility of 100 years. The present presentation follows at all moment, the directives and formulations given in the different structural Eurocodes, till the moment not included in the CTE. Finally the values of the actions that must be used to extend the life utility of a building until. 100 years will be deduced, also it suitability and e conomic feasibility will be discuss.
Resumo:
Insulating materials in buildings are one of the main factors that should be taken into account when talking about sustainability since with a correct application it could imply important savings for the citizens. In the course of its life, a building requires a series of supplies to perform the duties it has been built for, generating an impact on the environment. The selection of one material or another will establish partly the global environmental impact of the building. Choosing the right insulating material will determine the building's general degree of sustainability, both in its heating savings (energy consumption) and in the environmental impacts caused by its LCA (greenhouse gas emissions). Therefore, we propose to establish guidelines to characterize the insulating material with a better environmental performance in all the stages of its life cycle, taking into account the construction system, the use of the building and its location.
Resumo:
Estudio de soluciones prefabricadas de hormigón no estandarizadas en los Países Bajos tras la Segunda Guerra Mundial.
Resumo:
The complexity of climate change and its evolution during the last few years has a positive impact on new developments and approaches to reduce the emissions of CO2. Looking for a methodology to evaluate the sustainability of a roadway, a tool has been developed. Life Cycle Assessment (LCA) is being accepted by the road industry to measure and evaluate the environmental impacts of an infrastructure, as the energy consumption and carbon footprint. This paper describes the methodology to calculate the CO2 emissions associated with the energy embodied on a roadway along its life cycle, including construction, operations and demolition. It will assist to find solutions to improve the energy footprint and reduce the amount of CO2 emissions. Details are provided of both, the methodology and the data acquisition. This paper is an application of the methodology to the Spanish highways, using a local database. Two case studies and a practical example are studied to show the model as a decision support for sustainable construction in the road industry.