893 resultados para Fiber Coupling Efficiency
Resumo:
We present a comprehensive numerical study of spiral-and scroll-wave dynamics in a state-of-the-art mathematical model for human ventricular tissue with fiber rotation, transmural heterogeneity, myocytes, and fibroblasts. Our mathematical model introduces fibroblasts randomly, to mimic diffuse fibrosis, in the ten Tusscher-Noble-Noble-Panfilov (TNNP) model for human ventricular tissue; the passive fibroblasts in our model do not exhibit an action potential in the absence of coupling with myocytes; and we allow for a coupling between nearby myocytes and fibroblasts. Our study of a single myocyte-fibroblast (MF) composite, with a single myocyte coupled to N-f fibroblasts via a gap-junctional conductance G(gap), reveals five qualitatively different responses for this composite. Our investigations of two-dimensional domains with a random distribution of fibroblasts in a myocyte background reveal that, as the percentage P-f of fibroblasts increases, the conduction velocity of a plane wave decreases until there is conduction failure. If we consider spiral-wave dynamics in such a medium we find, in two dimensions, a variety of nonequilibrium states, temporally periodic, quasiperiodic, chaotic, and quiescent, and an intricate sequence of transitions between them; we also study the analogous sequence of transitions for three-dimensional scroll waves in a three-dimensional version of our mathematical model that includes both fiber rotation and transmural heterogeneity. We thus elucidate random-fibrosis-induced nonequilibrium transitions, which lead to conduction block for spiral waves in two dimensions and scroll waves in three dimensions. We explore possible experimental implications of our mathematical and numerical studies for plane-, spiral-, and scroll-wave dynamics in cardiac tissue with fibrosis.
Resumo:
Temperature dependent x-ray diffraction measurements have been performed to understand the implications of magnetic phase coexistence on crystallographic structure in a half-doped manganite Pr0.5Sr0.5MnO3. The compound shows a structural phase transition from high-temperature tetragonal-I4/mcm to low-temperature orthorhombic-Fmmm symmetry around the ferromagnetic to antiferro-magnetic transition. Rietveld analysis shows the coexistence of these two structures emerges at high temperature within the ferromagnetic state, and persists down to lowest temperature. Below around 40 K, however, this structural evolution stops, and a significant fraction (similar to 22%) of untransformed high-temperature phase remains. This agrees with earlier magnetization study, thus establishing its magneto-structural coupling. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Palladium catalyzed cross-coupling reaction of hydrazones with aryl halides in the absence of external ligand is reported. The versatility of this coupling reaction is demonstrated in showcasing the selectivity of coupling reaction in the presence of hydroxyl and amine functional groups. This method allows synthesizing a variety of heterocyclic compounds, which are difficult to access from other traditional methods and are not synthesized by employing similar coupling reactions. Application of the present methodology is validated in tandem reaction of ketones to the corresponding substituted olefins in a single pot experiment.
Resumo:
A theoretical study has been carried out at the B3LYP/LANL2DZ level to compare the reactivity of phenyl isocyanate and phenyl isothiocyanate towards titanium(IV) alkoxides. Isocyanates are shown to favour both mono insertion and double insertion reactions. Double insertion in a head-to-tail fashion is shown to be more exothermic than double insertion in a head-to-head fashion. The head-to-head double insertion leads to the metathesis product, a carbodiimide, after the extrusion of carbon dioxide. In the case of phenyl isothiocyanate, calculations favour the formation of only mono insertion products. Formation of a double insertion product is highly unfavourable. Further, these studies indicate that the reverse reaction involving the metathesis of N,N-'-diphenyl carbodiimide with carbon dioxide is likely to proceed more efficiently than the metathesis reaction with carbon disulphide. This is in excellent agreement with experimental results as metathesis with carbon disulphide fails to occur. In a second study, multilayer MM/QM calculations are carried out on intermediates generated from reduction of titanium(IV) alkoxides to investigate the effect of alkoxy bridging on the reactivity of multinuclear Ti species. Bimolecular coupling of imines initiated by Ti(III) species leads to a mixture of diastereomers and not diastereoselective coupling of the imine. However if the reaction is carried out by a trimeric biradical species, diastereoselective coupling of the imine is predicted. The presence of alkoxy bridges greatly favours the formation of the d,l (+/-) isomer, whereas the intermediate without alkoxy bridges favours the more stable meso isomer. As a bridged trimeric species, stabilized by bridging alkoxy groups, correctly explains the diastereoselective reaction, it is the most likely intermediate in the reaction.
Resumo:
It is known that carbon nanotubes (CNTs) possess multifunctional characteristics, which are applicable for a wide variety of engineering applications. CNT is also recognized as a radiation sensitive material, for example for detecting infrared (IR) radiations. One of the direct implications of exposing CNTs to radiation is the photomechanical actuation and generation of a photovoltage/photocurrent. The present work focuses on coupling electromechanical and photomechanical characteristics to enhance the resulting induced-strain response in CNTs. We have demonstrated that after applying an electric field the induced strain in CNT sheet is enhanced to about similar to 2.18 times for the maximum applied electric field at 2 V as compared to the photo-actuation response alone. This enhancement of the strain at higher bias voltages (> 1 V) can be considered as a sum of individual contributions of the bias voltage and IR stimulus. However, at lower voltage (< 1 V) the enhancement in the resulting strain has been attributed to the associated electrostatic effects when CNTs are stimulated with IR radiation under external bias conditions. This report reveals that voltage bias or IR stimulus alone could not produce the observed strain in the CNT sheet under lower bias conditions.
Resumo:
In this paper we will be presenting the effect of fluidic gap, the effect of change of refractive index of the fluid contained in the gap, and the effect of higher order modes on the efficiency of light coupling and thus on the on the sensitivity of the sensor.
Resumo:
This paper deals with the coupling of High Power Microwaves with a buried twisted pair cable. The electric field at a distance of 1km from the HPM antenna has been computed and is used for further computation of induced voltage and current. It is found that the peak of the induced current and voltage in a buried unshielded twisted pair cable at a distance of 1km from an HPM antenna of power level 10GW is 20A and 2kV respectively.
Resumo:
In this paper we will be presenting the effect of fluidic gap, the effect of change of refractive index of the fluid contained in the gap, and the effect of higher order modes on the efficiency of light coupling and thus on the on the sensitivity of the sensor.
Resumo:
Tunability of electron recombination time and light to electricity conversion efficiency to superior values in semiconductor sensitized solar cells via optimized design of nanocrystal light sensitizer shape is discussed here.
Resumo:
The success of AAV2 mediated hepatic gene transfer in human trials for diseases such as hemophilia has been hampered by a combination of low transduction efficiency and a robust immune response directed against these vectors. We have previously shown that AAV2 is targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal degradation machinery and modification of the serine(S)/threonine(T) kinase and lysine(K) targets on AAV capsid is beneficial. Thus targeted single mutations of S/T>A(S489A, S498A, T251A) and K>R (K532R) improved the efficiency of gene transfer in vivo as compared to wild type (WT)-AAV2 vectors (∼6-14 fold). In the present study, we evaluated if combined alteration of the phosphodegrons (PD), which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, improves further the gene transfer efficiency. Thus, we generated four multiple mutant vectors (PD: 1+3, S489A+K532R, PD: 1+3, S489A+K532R together with T251 residue which did not lie in any of the phosphodegrons but had shown increased transduction efficiency compared to the WT-AAV2 vector (∼6 fold) and was also conserved in 9 out of 10 AAV serotypes (AAV 1 to 10), PD: 1+3, S489A+K532R+S498A and a fourth combination of PD: 3, K532R+T251. We then evaluated them in vitro and in vivo and compared their gene transfer efficiency with either the WT-AAV2 or the best single mutant S489A-AAV2 vector. The novel multiple mutations on the AAV2 capsid did not affect the overall vector packaging efficiency. All the multiple AAV2 mutants showed superior transduction efficiency in HeLa cells in vitro when compared to either the WT (62-72% Vs 21%) or the single mutant S489A (62-72% Vs 50%) AAV2 vectors as demonstrated by FACS analysis (Fig. 1A). On hepatic gene transfer with 5x10^10 vgs per animal in C57BL/6 mice, all the multiple mutants showed increased transgene expression compared to either the WT-AAV2 (∼15-23 fold) or the S489A single mutant vector (∼2-3 fold) (Fig.1B and C). These novel multiple mutant AAV2 vectors also showed higher vector copy number in murine hepatocytes 4 weeks post transduction, as compared to the WT-AAV2 (∼5-6 Vs 1.4 vector copies/diploid genome) and further higher when compared to the single mutant S489A(∼5-6 fold Vs 3.8 fold) (Fig.1D). Further ongoing studies will demonstrate the therapeutic benefit of one or more of the multiple mutants vectors in preclinical models of hemophilia.
Resumo:
Etched Fiber Bragg Grating (EFBG) sensors are attractive from the point of the inherently high multiplexing ability of fiber based sensors. However, the strong dependence of the sensitivity of EFBG sensors on the fiber diameter requires robust methods for calibration when used for distributed sensing in a large array format. Using experimental data and numerical modelling, we show that knowledge of the wavelength shift during the etch process is necessary for high-fidelity calibration of EFBG arrays. However as this approach requires the monitoring of every element of the sensor array during etching, we also proposed and demonstrated a calibration scheme using data from bulk refractometry measurements conducted post-fabrication without needing any information about the etching process. Although this approach is not as precise as the first one, it may be more practical as there is no requirement to monitor each element of the sensor array. We were able to calibrate the response of the sensors to within 3% with the approach using information acquired during etching and to within 5% using the post-fabrication bulk refractometry approach in spite of the sensitivities of the array element differing by more than a factor of 4. These two approaches present a tradeoff between accuracy and practicality.
Resumo:
While Fiber Bragg Grating (FBG) sensors have been extensively used for temperature and strain sensing, clad etched FBGs (EFBGs) have only recently been explored for refractive index sensing. Prior literature in EFBG based refractive index sensing predominantly deals with bulk refractometry only, where the Bragg wavelength shift of the sensor as a function of the bulk refractive index of the sample can be analytically modeled, unlike the situation for adsorption of molecular thin films on the sensor surface. We used a finite element model to calculate the Bragg wavelength change as a function of thickness and refractive index of the adsorbing molecular layer and compared the model with the real-time, in-situ measurement of electrostatic layer-by-layer (LbL) assembly of weak polyelectrolytes on the silica surface of EFBGs. We then used this model to calculate the layer thickness of LbL films and found them to be in agreement with literature. Further, we used this model to arrive at a realistic estimate of the limit of detection of EFBG sensors based on nominal measurement noise levels in current FBG interrogation systems and found that sufficiently thinned EFBGs can provide a competitive platform for real-time measurement of molecular interactions while simultaneously leveraging the high multiplexing capabilities of fiber optics.
Resumo:
A highly regioselective alkenylation of indole at the C2-position has been achieved using the Ru(II) catalyst by employing a directing group strategy. This strategy offers rare selectivity for the alkenylation N-benzoylindole at the C-2 position in the presence of the more active C3- and C7-position of indole and the ortho-positions of the benzoyl protecting group. A simple deprotection of the benzoyl group has also been exemplified, and the resulting product serves as a useful synthon for natural product syntheses.
Resumo:
The sensing of carbon dioxide (CO2) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO2. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the surface of the core for detecting the concentrations of CO2 gas at room temperature, in ppm levels over a wide range (1000 ppm-4000 ppm). The limit of detection observed in polyallylamine-amino-carbon nanotube coated core-FBG has been found to be about 75 ppm. In this approach, when CO2 gas molecules interact with the polyallylamine-amino-carbon nanotube coated FBG, the effective refractive index of the fiber core changes, resulting in a shift in Bragg wavelength. The experimental data show a linear response of Bragg wavelength shift for increase in concentration of CO2 gas. Besides being reproducible and repeatable, the technique is fast, compact, and highly sensitive. (C) 2013 AIP Publishing LLC.
Resumo:
Carbon Nanotubes (CNTs) grown on substrates are potential electron sources in field emission applications. Several studies have reported the use of CNTs in field emission devices, including field emission displays, X-ray tube, electron microscopes, cathode-ray lamps, etc. Also, in recent years, conventional cold field emission cathodes have been realized in micro-fabricated arrays for medical X-ray imaging. CNTbased field emission cathode devices have potential applications in a variety of industrial and medical applications, including cancer treatment. Field emission performance of a single isolated CNT is found to be remarkable, but the situation becomes complex when an array of CNTs is used. At the same time, use of arrays of CNTs is practical and economical. Indeed, such arrays on cathode substrates can be grown easily and their collective dynamics can be utilized in a statistical sense such that the average emission intensity is high enough and the collective dynamics lead to longer emission life. The authors in their previous publications had proposed a novel approach to obtain stabilized field emission current from a stacked CNT array of pointed height distribution. A mesoscopic modeling technique was employed, which took into account electro-mechanical forces in the CNTs, as well as transport of conduction electron coupled with electron phonon induced heat generation from the CNT tips. The reported analysis of pointed arrangements of the array showed that the current density distribution was greatly localized in the middle of the array, the scatter due to electrodynamic force field was minimized, and the temperature transients were much smaller compared to those in an array with random height distribution. In the present paper we develop a method to compute the emission efficiency of the CNT array in terms of the amount of electrons hitting the anode surface using trajectory calculations. Effects of secondary electron emission and parasitic capacitive nonlinearity on the current-voltage signals are accounted. Field emission efficiency of a stacked CNT array with various pointed height distributions are compared to that of arrays with random and uniform height distributions. Effect of this parasitic nonlinearity on the emission switch-on voltage is estimated by model based simulation and Monte Carlo method.