929 resultados para Fast and slow twitch muscles
Resumo:
Accurate knowledge of the time since death, or postmortem interval (PMI), has enormous legal, criminological, and psychological impact. In this study, an investigation was made to determine whether the relationship between the degradation of the human cardiac structure protein Cardiac Troponin T and PMI could be used as an indicator of time since death, thus providing a rapid, high resolution, sensitive, and automated methodology for the determination of PMI. ^ The use of Cardiac Troponin T (cTnT), a protein found in heart tissue, as a selective marker for cardiac muscle damage has shown great promise in the determination of PMI. An optimized conventional immunoassay method was developed to quantify intact and fragmented cTnT. A small sample of cardiac tissue, which is less affected than other tissues by external factors, was taken, homogenized, extracted with magnetic microparticles, separated by SDS-PAGE, and visualized with Western blot by probing with monoclonal antibody against cTnT. This step was followed by labeling and available scanners. This conventional immunoassay provides a proper detection and quantitation of cTnT protein in cardiac tissue as a complex matrix; however, this method does not provide the analyst with immediate results. Therefore, a competitive separation method using capillary electrophoresis with laser-induced fluorescence (CE-LIF) was developed to study the interaction between human cTnT protein and monoclonal anti-TroponinT antibody. ^ Analysis of the results revealed a linear relationship between the percent of degraded cTnT and the log of the PMI, indicating that intact cTnT could be detected in human heart tissue up to 10 days postmortem at room temperature and beyond two weeks at 4C. The data presented demonstrates that this technique can provide an extended time range during which PMI can be more accurately estimated as compared to currently used methods. The data demonstrates that this technique represents a major advance in time of death determination through a fast and reliable, semi-quantitative measurement of a biochemical marker from an organ protected from outside factors. ^
Resumo:
Routine monitoring of environmental pollution demands simplicity and speed without sacrificing sensitivity or accuracy. The development and application of sensitive, fast and easy to implement analytical methodologies for detecting emerging and traditional water and airborne contaminants in South Florida is presented. A novel method was developed for quantification of the herbicide glyphosate based on lyophilization followed by derivatization and simultaneous detection by fluorescence and mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic usage and agricultural runoff from farms. A second study describes a set of fast, automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill in 2010. The methods presented here allow the trace-level detection of these compounds in seawater, crude oil and commercial dispersants formulations. In addition, two methodologies were developed for the analysis of well-known pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate matter (APM). PAHs are ubiquitous environmental contaminants and some are potent carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS analysis with minimal sample preparation and a lower solvent consumption. The system can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs in 28 minutes. The methodology was tested with environmental samples from Miami. Airborne Particulate Matter is a mixture of particles of chemical and biological origin. Assessment of its elemental composition is critical for the protection of sensitive ecosystems and public health. The APM collected from Port Everglades between 2005 and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic activities. Data suggest that the major sources of APM were an electricity plant, road dust, industrial emissions and marine vessels.
Resumo:
The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^
Resumo:
Thiosalt species are unstable, partially oxidized sulfur oxyanions formed in sulfur-rich environments but also during the flotation and milling of sulfidic minerals especially those containing pyrite (FeS₂) and pyrrhotite (Fe₍₁₋ₓ₎S, x = 0 to 0.2). Detecting and quantifying the major thiosalt species such as sulfate (SO₄²⁻), thiosulfate (S₂O₃²⁻), trithionate (S₃O₆²⁻), tetrathionate (S₄O₆²⁻) and higher polythionates (SₓO₆²⁻, where 3 ≤ x ≤ 10) in the milling process and in the treated tailings is important to understand how thiosalts are generated and provides insight into potential treatment. As these species are unstable, a fast and reliable analytical technique is required for their analysis. Three capillary zone electrophoresis (CZE) methods using indirect UV-vis detection were developed for the simultaneous separation and determination of five thiosalt anions: SO₄²⁻, S₂O₃²⁻, S₃O₆²⁻, S₄O₆²⁻ and S₅O₆²⁻. Both univariate and multivariate experimental design approaches were used to optimize the most critical factors (background electrolyte (BGE) and instrumental conditions) to achieve fast separation and quantitative analysis of the thiosalt species. The mathematically predicted responses for the multivariate experiments were in good agreement with the experimental results. Limits of detection (LODs) (S/N = 3) for the methods were between 0.09 and 0.34 μg/mL without a sample stacking technique and nearly four-fold increase in LODs with the application of field-amplified sample stacking. As direct analysis of thiosalts by mass spectrometry (MS) is limited by their low m/z values and detection in negative mode electrospray ionization (ESI), which is typically less sensitive than positive ESI, imidazolium-based (IP-L-Imid and IP-T-Imid) and phosphonium-based (IP-T-Phos) tricationic ion-pairing reagents were used to form stable high mass ions non-covalent +1 ion-pairs with these species for ESI-MS analysis and the association constants (Kassoc) determined for these ion-pairs. Kassoc values were between 6.85 × 10² M⁻¹ and 3.56 × 10⁵ M⁻¹ with the linear IP-L-Imid; 1.89 ×10³ M⁻¹ and 1.05 × 10⁵ M⁻¹ with the trigonal IP-T-Imid ion-pairs; and 7.51×10² M⁻¹ and 4.91× 10⁴ M⁻¹ with the trigonal IP-T-Phos ion-pairs. The highest formation constants were obtained for S₃O₆²⁻ and the imidazolium-based linear ion-pairing reagent (IP-L-Imid), whereas the lowest were for IP-L-Imid: SO₄²⁻ ion-pair.
Resumo:
In perifusion cell cultures, the culture medium flows continuously through a chamber containing immobilized cells and the effluent is collected at the end. In our main applications, gonadotropin releasing hormone (GnRH) or oxytocin is introduced into the chamber as the input. They stimulate the cells to secrete luteinizing hormone (LH), which is collected in the effluent. To relate the effluent LH concentration to the cellular processes producing it, we develop and analyze a mathematical model consisting of coupled partial differential equations describing the intracellular signaling and the movement of substances in the cell chamber. We analyze three different data sets and give cellular mechanisms that explain the data. Our model indicates that two negative feedback loops, one fast and one slow, are needed to explain the data and we give their biological bases. We demonstrate that different LH outcomes in oxytocin and GnRH stimulations might originate from different receptor dynamics. We analyze the model to understand the influence of parameters, like the rate of the medium flow or the fraction collection time, on the experimental outcomes. We investigate how the rate of binding and dissociation of the input hormone to and from its receptor influence its movement down the chamber. Finally, we formulate and analyze simpler models that allow us to predict the distortion of a square pulse due to hormone-receptor interactions and to estimate parameters using perifusion data. We show that in the limit of high binding and dissociation the square pulse moves as a diffusing Gaussian and in this limit the biological parameters can be estimated.
Resumo:
Much of what is known about word recognition in toddlers comes from eyetracking studies. Here we show that the speed and facility with which children recognize words, as revealed in such studies, cannot be attributed to a task-specific, closed-set strategy; rather, children's gaze to referents of spoken nouns reflects successful search of the lexicon. Toddlers' spoken word comprehension was examined in the context of pictures that had two possible names (such as a cup of juice which could be called "cup" or "juice") and pictures that had only one likely name for toddlers (such as "apple"), using a visual world eye-tracking task and a picture-labeling task (n = 77, mean age, 21 months). Toddlers were just as fast and accurate in fixating named pictures with two likely names as pictures with one. If toddlers do name pictures to themselves, the name provides no apparent benefit in word recognition, because there is no cost to understanding an alternative lexical construal of the picture. In toddlers, as in adults, spoken words rapidly evoke their referents.
Resumo:
Uncertainty quantification (UQ) is both an old and new concept. The current novelty lies in the interactions and synthesis of mathematical models, computer experiments, statistics, field/real experiments, and probability theory, with a particular emphasize on the large-scale simulations by computer models. The challenges not only come from the complication of scientific questions, but also from the size of the information. It is the focus in this thesis to provide statistical models that are scalable to massive data produced in computer experiments and real experiments, through fast and robust statistical inference.
Chapter 2 provides a practical approach for simultaneously emulating/approximating massive number of functions, with the application on hazard quantification of Soufri\`{e}re Hills volcano in Montserrate island. Chapter 3 discusses another problem with massive data, in which the number of observations of a function is large. An exact algorithm that is linear in time is developed for the problem of interpolation of Methylation levels. Chapter 4 and Chapter 5 are both about the robust inference of the models. Chapter 4 provides a new criteria robustness parameter estimation criteria and several ways of inference have been shown to satisfy such criteria. Chapter 5 develops a new prior that satisfies some more criteria and is thus proposed to use in practice.
Resumo:
Wheat (Triticum aestivum L.) has a long tradition as a raw material for the production of malt and beer. While breeding and cultivation efforts for barley have been highly successful in creating agronomically and brew- technical optimal specialty cultivars that have become well established as brewing barley varieties, the picture is completely different for brewing wheat. An increasing wheat beer demand results in a rising amount of raw material. Wheat has been - and still is – grown almost exclusively for the baking industry. It is this high demand that defines most of the wheat breeding objectives; and these objectives are generally not favourable in brewing industry. It is of major interest to screen wheat varieties for brewing processability and to give more focus to wheat as a brewing cereal. To obtain fast and reliable predications about the suitability of wheat cultivars a new mathematical method was developed in this work. The method allows a selection based on generally accepted quality characteristics. As selection criteria the parameters raw protein, soluble nitrogen, Kolbach index, extract and viscosity were chosen. During a triannual cultivation series, wheat varieties were evaluated on their suitability for brewing as well as stability to environmental conditions. To gain a fundamental understanding of the complex malting process, microstructural changes were evaluated and visualized by confocal laser scanning and scanning electron microscopy. Furthermore, changes observed in the micrographs were verified and endorsed by metabolic changes using established malt attributes. The degradation and formation of proteins during malting is essential for the final beer quality. To visualise fundamental protein changes taking place during malting, samples of each single process step were analysed and fractioned according their solubility. Protein fractions were analysed using a Lab-on-a-chip technique as well as OFFgel analysis. In general, a different protein distribution of wheat compared to barley or oat could be confirmed. During the malting process a degradation of proteins to small peptides and amino acids could be observed in all four Osborn fractions. Furthermore, in this study a protein profiling was performed to evaluate changes during the mashing process as well as the influence of grist composition. Differences in specific protein peaks and profile were detected for all samples during mashing. This study investigated the suitability of wheat for malting and brewing industry and closed the scientifical gap of amylolytic, cytolytic and proteolytic changes during malting and mashing.
Resumo:
Locomotor recovery from anoxia is complicated and little is known about the molecular and cellular mechanisms regulating anoxic recovery in Drosophila. For this thesis I established a protocol for large-scale analysis of locomotor activity in adult flies with exposure to a transient anoxia. Using this protocol I observed that wild-type Canton-S flies recovered faster and more consistently from anoxia than the white-eyed mutant w1118, which carries a null allele of w1118 in an isogenic genetic background. Both Canton-S and w1118 are commonly used controls in the Drosophila community. Genetic analysis including serial backcrossing, RNAi knockdown, w+ duplication to Y chromosome as well as gene mutation revealed a strong association between the white gene and the timing of locomotor recovery. I also found that the locomotor recovery phenotype is independent of white-associated eye pigmentation, that heterozygous w+ allele was haplo-insufficient to induce fast and consistent locomotor recovery from anoxia in female flies, and that mini-white is insufficient to promote fast and consistent locomotor recovery. Moreover, locomotor recovery was delayed in flies with RNAi knockdown of white in subsets of serotonin neurons in the central nervous system. I further demonstrated that mutations of phosphodiesterase genes (PDE) displayed wild-type-like fast and consistent locomotor recovery, and that locomotor recovery was light-sensitive in the night in w1118. The delayed locomotor recovery and the light sensitivity were eliminated in PDE mutants that were dual-specific or cyclic guanosine monophosphate (cGMP)-specific. Up-regulation of cGMP using multiple approaches including PDE mutation, sildenafil feeding or specific expression of an atypical soluble guanylyl cyclase (Gyc88E) was sufficient to suppress w-RNAi induced delay of locomotor recovery. Taken together, these data strongly support the hypothesis that White transports cGMP and promotes fast and consistent locomotor recovery from anoxia.
Resumo:
INTRODUCTION: EGFR screening requires good quality tissue, sensitivity and turn-around time (TAT). We report our experience of routine screening, describing sample type, TAT, specimen quality (cellularity and DNA yield), histopathological description, mutation result and clinical outcome. METHODS: Non-small cell lung cancer (NSCLC) sections were screened for EGFR mutations (M+) in exons 18-21. Clinical, pathological and screening outcome data were collected for year 1 of testing. Screening outcome alone was collected for year 2. RESULTS: In year 1, 152 samples were tested, most (72%) were diagnostic. TAT was 4.9 days (95%confidence interval (CI)=4.5-5.5). EGFR-M+ prevalence was 11% and higher (20%) among never-smoking women with adenocarcinomas (ADCs), but 30% of mutations occurred in current/ex-smoking men. EGFR-M+ tumours were non-mucinous ADCs and 100% thyroid transcription factor (TTF1+). No mutations were detected in poorly differentiated NSCLC-not otherwise specified (NOS). There was a trend for improved overall survival (OS) among EGFR-M+ versus EGFR-M- patients (median OS=78 versus 17 months). In year 1, test failure rate was 19%, and associated with scant cellularity and low DNA concentrations. However 75% of samples with poor cellularity but representative of tumour were informative and mutation prevalence was 9%. In year 2, 755 samples were tested; mutation prevalence was 13% and test failure only 5.4%. Although samples with low DNA concentration (2.2 ng/μL), the mutation rate was 9.2%. CONCLUSION: Routine epidermal growth factor receptor (EGFR) screening using diagnostic samples is fast and feasible even on samples with poor cellularity and DNA content. Mutations tend to occur in better-differentiated non-mucinous TTF1+ ADCs. Whether these histological criteria may be useful to select patients for EGFR testing merits further investigation.
Resumo:
Sensitive detection of pathogens is critical to ensure the safety of food supplies and to prevent bacterial disease infection and outbreak at the first onset. While conventional techniques such as cell culture, ELISA, PCR, etc. have been used as the predominant detection workhorses, they are however limited by either time-consuming procedure, complicated sample pre-treatment, expensive analysis and operation, or inability to be implemented at point-of-care testing. Here, we present our recently developed assay exploiting enzyme-induced aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. In the experiments, AuNPs are first functionalized with specific, single-stranded RNA probes so that they exhibit high stability in solution even under high electrolytic condition thus exhibiting red color. When bacterial DNA is present in a sample, a DNA-RNA heteroduplex will be formed and subsequently prone to the RNase H cleavage on the RNA probe, allowing the DNA to liberate and hybridize with another RNA strand. This continuously happens until all of the RNA strands are cleaved, leaving the nanoparticles ‘unprotected’. The addition of NaCl will cause the ‘unprotected’ nanoparticles to aggregate, initiating a colour change from red to blue. The reaction is performed in a multi-well plate format, and the distinct colour signal can be discriminated by naked eye or simple optical spectroscopy. As a result, bacterial DNA as low as pM could be unambiguously detected, suggesting that the enzyme-induced aggregation of AuNPs assay is very easy to perform and sensitive, it will significantly benefit to development of fast and ultrasensitive methods that can be used for disease detection and diagnosis.
Resumo:
This thesis analyses the influence of qualitative and quantitative herbage production on seasonal rangelands, and of herd and pasture use strategies on feed intake, body mass development and reproductive performance of sheep and goats in the Altai mountain region of Bulgan county (soum) in Khovd province (aimag). This westernmost county of Mongolia is characterized by a very poor road network and thus very difficult access to regional and national markets. The thesis explores in this localized context the current rural development, the economic settings and political measures that affect the traditional extensive livestock husbandry system and its importance for rural livelihoods. Livestock management practices still follow the traditional transhumant mode, fully relying on natural pasture. This renders animal feeding very vulnerable to the highly variable climatic conditions which is one of many reasons for gradually declining quantity and quality of pasture vegetation. Small ruminants, and especially goats, are the main important species securing economic viability of their owners’ livelihood, and they are well adapted to the harsh continental climate and the present low input management practices. It is likely that small ruminants will keep their vital role for the rural community in the future, since the weak local infrastructure and slow market developments currently do not allow many income diversification options. Since the profitability of a single animal is low, animal numbers tend to increase, whereas herd management does not change. Possibilities to improve the current livestock management and thus herders’ livelihoods in an environmentally, economically and socially sustainable manner are simulated through bio-economic modelling and the implications are discussed at the regional and national scale. To increase the welfare of the local population, a substantial infrastructural and market development is needed, which needs to be accompanied by suitable pasture management schemes and policies
Resumo:
La maladie de Parkinson (MP) est une maladie neurodégénérative qui se caractérise principalement par la présence de symptômes moteurs. Cependant, d’autres symptômes, dits non moteurs, sont fréquents dans la MP et assombrissent le pronostic; ceux ci incluent notamment les désordres du sommeil et les troubles cognitifs. De fait, sur une période de plus de 10 ans, jusqu’à 90 % des patients avec la MP développeraient une démence. L’identification de marqueurs de la démence dans la MP est donc primordiale pour permettre le diagnostic précoce et favoriser le développement d’approches thérapeutiques préventives. Plusieurs études ont mis en évidence la contribution du sommeil dans les processus de plasticité cérébrale, d’apprentissage et de consolidation mnésique, notamment l’importance des ondes lentes (OL) et des fuseaux de sommeil (FS). Très peu de travaux se sont intéressés aux liens entre les modifications de la microarchitecture du sommeil et le déclin cognitif dans la MP. L’objectif de cette thèse est de déterminer, sur le plan longitudinal, si certains marqueurs électroencéphalographiques (EEG) en sommeil peuvent prédire la progression vers la démence chez des patients atteints de la MP. La première étude a évalué les caractéristiques des OL et des FS durant le sommeil lent chez les patients avec la MP selon qu’ils ont développé ou non une démence (MP démence vs MP sans démence) lors du suivi longitudinal, ainsi que chez des sujets contrôles en santé. Comparativement aux patients MP sans démence et aux sujets contrôles, les patients MP démence présentaient au temps de base une diminution de la densité, de l’amplitude et de la fréquence des FS. La diminution de l’amplitude des FS dans les régions postérieures était associée à de moins bonnes performances aux tâches visuospatiales chez les patients MP démence. Bien que l’amplitude des OL soit diminuée chez les deux groupes de patients avec la MP, celle ci n’était pas associée au statut cognitif lors du suivi. La deuxième étude a évalué les marqueurs spectraux du développement de la démence dans la MP à l’aide de l’analyse quantifiée de l’EEG en sommeil lent, en sommeil paradoxal et à l’éveil. Les patients MP démence présentaient une diminution de la puissance spectrale sigma durant le sommeil lent dans les régions pariétales comparativement aux patients MP sans démence et aux contrôles. Durant le sommeil paradoxal, l’augmentation de la puissance spectrale en delta et en thêta, de même qu’un plus grand ratio de ralentissement de l’EEG, caractérisé par un rapport plus élevé des basses fréquences sur les hautes fréquences, était associée au développement de la démence chez les patients avec la MP. D’ailleurs, dans la cohorte de patients, un plus grand ralentissement de l’EEG en sommeil paradoxal dans les régions temporo occipitales était associé à des performances cognitives moindres aux épreuves visuospatiales. Enfin, durant l’éveil, les patients MP démence présentaient au temps de base une augmentation de la puissance spectrale delta, un plus grand ratio de ralentissement de l’EEG ainsi qu’une diminution de la fréquence dominante occipitale alpha comparativement aux patients MP sans démence et aux contrôles. Cette thèse suggère que des anomalies EEG spécifiques durant le sommeil et l’éveil peuvent identifier les patients avec la MP qui vont développer une démence quelques années plus tard. L’activité des FS, ainsi que le ralentissement de l’EEG en sommeil paradoxal et à l’éveil, pourraient donc servir de marqueurs potentiels du développement de la démence dans la MP.
Resumo:
v. 17, n. 2, p. 285-295, abr./jun. 2016.
Resumo:
A new method for the evaluation of the efficiency of parabolic trough collectors, called Rapid Test Method, is investigated at the Solar Institut Jülich. The basic concept is to carry out measurements under stagnation conditions. This allows a fast and inexpensive process due to the fact that no working fluid is required. With this approach, the temperature reached by the inner wall of the receiver is assumed to be the stagnation temperature and hence the average temperature inside the collector. This leads to a systematic error which can be rectified through the introduction of a correction factor. A model of the collector is simulated with COMSOL Multipyisics to study the size of the correction factor depending on collector geometry and working conditions. The resulting values are compared with experimental data obtained at a test rig at the Solar Institut Jülich. These results do not match with the simulated ones. Consequentially, it was not pos-sible to verify the model. The reliability of both the model with COMSOL Multiphysics and of the measurements are analysed. The influence of the correction factor on the rapid test method is also studied, as well as the possibility of neglecting it by measuring the receiver’s inner wall temperature where it receives the least amount of solar rays. The last two chapters analyse the specific heat capacity as a function of pressure and tem-perature and present some considerations about the uncertainties on the efficiency curve obtained with the Rapid Test Method.