863 resultados para Fashion in motion pictures


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microscale abrasion or ball-cratering test is being increasingly applied to a wide range of bulk materials and coatings. The response of materials to this test depends critically on the nature of the motion of the abrasive particles in the contact zone: whether they roll and produce multiple indentations in the coating, or slide causing grooving abrasion. Similar phenomena also occur when hard contaminant particles enter a lubricated contact. This paper presents simple quantitative two-dimensional models which describe two aspects of the interaction between a hard abrasive particle and two sliding surfaces. The first model treats the conditions under which a spherical abrasive particle of size d can be entrained into the gap between a rotating sphere of radius R and a plane surface. These conditions are determined by the coefficients of friction between the particle and the sphere, and the particle and the plane, denoted by μs and μp respectively. This model predicts that the values of (μs + μp) and 2μs should both exceed √2d/R for the particles to be entrained into the contact. If either is less than this value, the particle will slide against the sphere and never enter the contact. The second model describes the mechanisms of abrasive wear in a contact when an idealized rhombus-sectioned prismatic particle is located between two parallel plane surfaces separated by a certain distance, which can represent either the thickness of a fluid film or the spacing due to the presence of other particles. It is shown that both the ratio of particle size to the separation of the surfaces and the ratio of the hardnesses of the two surfaces have important influences on the particle motion and hence on the mechanism of the resulting abrasive wear. Results from this model are compared with experimental observations, and the model is shown to lead to realistic predictions. © IMechE 2003.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Model-based optical motion capture systems require knowledge of the position of the markers relative to the underlying skeleton, the lengths of the skeleton's limbs, and which limb each marker is attached to. These model parameters are typically assumed and entered into the system manually, although techniques exist for calculating some of them, such as the position of the markers relative to the skeleton's joints. We present a fully automatic procedure for determining these model parameters. It tracks the 2D positions of the markers on the cameras' image planes and determines which markers lie on each limb before calculating the position of the underlying skeleton. The only assumption is that the skeleton consists of rigid limbs connected with ball joints. The proposed system is demonstrated on a number of real data examples and is shown to calculate good estimates of the model parameters in each. © 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Both decision making and sensorimotor control require real-time processing of noisy information streams. Historically these processes were thought to operate sequentially: cognitive processing leads to a decision, and the outcome is passed to the motor system to be converted into action. Recently, it has been suggested that the decision process may provide a continuous flow of information to the motor system, allowing it to prepare in a graded fashion for the probable outcome. Such continuous flow is supported by electrophysiology in nonhuman primates. Here we provide direct evidence for the continuous flow of an evolving decision variable to the motor system in humans. Subjects viewed a dynamic random dot display and were asked to indicate their decision about direction by moving a handle to one of two targets. We probed the state of the motor system by perturbing the arm at random times during decision formation. Reflex gains were modulated by the strength and duration of motion, reflecting the accumulated evidence in support of the evolving decision. The magnitude and variance of these gains tracked a decision variable that explained the subject's decision accuracy. The findings support a continuous process linking the evolving computations associated with decision making and sensorimotor control.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Real-time cardiac ultrasound allows monitoring the heart motion during intracardiac beating heart procedures. Our application assists atrial septal defect (ASD) closure techniques using real-time 3D ultrasound guidance. One major image processing challenge is the processing of information at high frame rate. We present an optimized block flow technique, which combines the probability-based velocity computation for an entire block with template matching. We propose adapted similarity constraints both from frame to frame, to conserve energy, and globally, to minimize errors. We show tracking results on eight in-vivo 4D datasets acquired from porcine beating-heart procedures. Computing velocity at the block level with an optimized scheme, our technique tracks ASD motion at 41 frames/s. We analyze the errors of motion estimation and retrieve the cardiac cycle in ungated images. © 2007 IEEE.