899 resultados para FACTOR RECEPTOR-1
Resumo:
Alzheimer's disease is characterized by the over-production and accumulation of amyloidogenic A beta peptide, which can induce cell death in vitro. It has been suggested that the death signal could be transduced by the pan neurotrophin receptor (p75NTR). p75NTR is well known for its ability to mediate neuronal death in neurodegenerative conditions and is inextricably linked with changes that occur in Alzheimer's disease. Moreover, A beta binds to p75NTR, activating signalling cascades. However, the complexity of p75NTR-mediated signalling, which does not always promote cell death, leaves open the possibly of A beta promoting death via an alternative signalling pathway or the regulation of other p75NTR-mediated actions. This review focuses on the interactions between A beta and p75NTR in the context of the broader p75NTR signalling field, and offers alternative explanations for how p75NTR might contribute to the aetiology of Alzheimer's disease.
Resumo:
Bone tissue homeostasis relies upon the ability of cells to detect and interpret extracellular signals that direct changes in tissue architecture. This study utilized a four-point bending model to create both fluid shear and strain forces (loading) during the time-dependent progression of MC3T3-E1 preosteoblasts along the osteogenic lineage. Loading was shown to increase cell number, alkaline phosphatase (ALP) activity, collagen synthesis, and the mRNA expression levels of Runx2, osteocalcin (OC), osteopontin, and cyclo-oxygenase-2. However, mineralization in these cultures was inhibited, despite an increase in calcium accumulation, suggesting that loading may inhibit mineralization in order to increase matrix deposition. Loading also increased fibroblast growth factor receptor-3 (FGFR3) expression coincident with an inhibition of FGFR1, FGFR4, FGF1, and extracellular signal-related kinase (ERK)1/2 phosphorylation. To examine whether these loading-induced changes in cell phenotype and FGFR expression could be attributed to the inhibition of ERK1/2 phosphorylation, cells were grown for 25 days in the presence of the MEK1/2 inhibitor, U0126. Significant increases in the expression of FGFR3, ALP, and OC were observed, as well as the inhibition of FGFR1, FGFR4, and FGF1. However, U0126 also increased matrix mineralization, demonstrating that inhibition of ERK1/2 phosphorylation cannot fully account for the changes observed in response to loading. in conclusion, this study demonstrates that preosteoblasts are mechanoresponsive, and that long-term loading, whilst increasing proliferation and differentiation of preosteoblasts, inhibits matrix mineralization. In addition, the increase in FGFR3 expression suggests that it may have a role in osteoblast differentiation.
Resumo:
We report in, this study that activation of the JNK by the growth factor, CSF-1 is critical for macrophage development, proliferation, and survival. Inhibition of JNK with two distinct classes of inhibitors, the pharmacological agent SP600125, or the peptide D-JNKI1 resulted in cell cycle inhibition with an arrest at the G(2)/M transition and subsequent apoptosis. JNK inhibition resulted in decreased expression of CSF-1R (c-fins) and Bcl-x(L) mRNA in mature macrophages and repressed CSF-1-dependent differentiation of bone marrow cells to macrophages. Macrophage sensitivity to JNK inhibitors may be linked to phosphorylation of the PU.1 transcription factor. Inhibition of JNK disrupted PUA binding to an element in the c-fins gene promoter and decreased promoter activity. Promoter activity could be restored by overexpression of PUA. A comparison of expression profiles of macrophages with 22 other tissue types showed that genes that signal JNK activation downstream of tyrosine kinase receptors, such as focal adhesion kinase, Nck-interacting kinase, and Rac1 and scaffold proteins are highly expressed in macrophages relative to other tissues. This pattern of expression may underlie the novel role of JNK in macrophages.
Resumo:
We compared changes in markers of muscle damage and systemic inflammation after submaximal and maximal lengthening muscle contractions of the elbow flexors. Using a cross-over design, 10 healthy young men not involved in resistance training completed a submaximal trial (10 sets of 60 lengthening contractions at 10% maximum isometric strength, 1 min rest between sets), followed by a maximal trial (10 sets of three lengthening contractions at 100% maximum isometric strength, 3 min rest between sets). Lengthening contractions were performed on an isokinetic dynamometer. Opposite arms were used for the submaximal and maximal trials, and the trials were separated by a minimum of two weeks. Blood was sampled before, immediately after, 1 h, 3 h, and 1-4 d after each trial. Total leukocyte and neutrophil numbers, and the serum concentration of soluble tumor necrosis factor-alpha receptor 1 were elevated after both trials (P < 0.01), but there were no differences between the trials. Serum IL-6 concentration was elevated 3 h after the submaximal contractions (P < 0.01). The concentrations of serum tumor necrosis factor-alpha, IL-1 receptor antagonist, IL-10, granulocyte-colony stimulating factor and plasma C-reactive protein remained unchanged following both trials. Maximum isometric strength and range of motion decreased significantly (P < 0.001) after both trials, and were lower from 1-4 days after the maximal contractions compared to the submaximal contractions. Plasma myoglobin concentration and creatine kinase activity, muscle soreness and upper arm circumference all increased after both trials (P < 0.01), but were not significantly different between the trials. Therefore, there were no differences in markers of systemic inflammation, despite evidence of greater muscle damage following maximal versus submaximal lengthening contractions of the elbow flexors.
Resumo:
A neuronal cell line (NG115-401L-C3) was stimulated by mitogenic (angiotensin) and non-mitogenic (bradykinin) peptides and examined for the time course of changes in the levels of radiolabelled inositol phosphates and phospholipids. Both peptides stimulated the time-dependent production of Ins(1,4,5)P3 and related metabolites. Bradykinin caused a much larger increase in Ins(1,4,5)P3 than did angiotensin. However, both peptides stimulated similar rises in the levels of Ins(1,3,4)P3 and InsP4. Bradykinin but not angiotensin, caused a rapid (within 2 s) fall in the levels of PtdIns(4,5)P2 and PtdIns(4)P. Serum pretreatment of the cells caused a 2-3-fold potentiation of both the responses to bradykinin and angiotensin. Although significant levels of PtdIns(3)P were detected in resting cells neither mitogenic (angiotensin, insulin-like growth factor I, transforming growth factor beta) nor non-mitogenic (bradykinin, nerve growth factor interleukin-1) receptor activation changed its levels, arguing against regulation of either PtdIns 3-kinase or PtdIns(3)P phosphatase. We conclude that, as judged by the levels of its product. PtdIns(3)P, the enzyme PtdIns 3-kinase is not activated. This questions the significance of this activity in the receptor-mediated initiation of DNA synthesis.
Resumo:
We have previously tested the effects of high dose AA supplements on human volunteers in terms of reducing DNA damage, as a possible mechanism of the vitamin’s proposed protective effect against cancer and detected a transient, pro-oxidant effect at high doses (500 mg/day). Herein, we present evidence of a pro-oxidant effect of the vitamin when added to CCRF cells at extracellular concentrations which mimic those present in human serum in vivo (50–150AM). The activation of the transcription factor AP-1 was optimal at 100 AM AA following 3h exposure at 37jC. A minimum dose of 50 AM of AA activated NFnB but there appeared to be no dose-dependent effect. Increases of 2–3 fold were observed for both transcription factors when cells were exposed to 100 AM AA for 3h, comparing well with the pro-oxidant effect of H2O2 at similar concentrations. In parallel experiments the activation of AP-1 (binding to DNA) was potentiated when cells were pre-incubated with AA prior to exposure with H2O2. Cycloheximide pretreatment (10 Ag/ml for 15min) caused a 50% inhibition of AP-1 binding to DNA suggesting that it was due to a combination of increasing the binding of pre-existing Fos and Jun and an increase in their de novo synthesis. Cellular localisation was confirmed by immunocytochemistry using antibodies specific for c-Fos and c-Jun proteins. These results suggest that extracellular AA can elicit an intracellular stress response resulting in the activation of the oxidative stress-responsive transcription factors AP-1 and NFnB. These transcription factors are involved in the induction of genes associated with an oxidative stress response, cell cycle arrest and DNA repair confirmed by our cDNA microarray analysis (Affymetrix). This may explain the abilty for AA to appear to inhibit 8-oxodG, yet simultaneously generate another oxidative stress biomarker, 8-oxo-dA. These results suggest a completely novel DNA repair action for AA. Whether this action is relevant to our in vivo findings will be the subject of our future research.
Resumo:
The aim of this letter is to demonstrate that complete removal of spectral aliasing occurring due to finite numerical bandwidth used in the split-step Fourier simulations of nonlinear interactions of optical waves can be achieved by enlarging each dimension of the spectral domain by a factor (n+1)/2, where n is the number of interacting waves. Alternatively, when using low-pass filtering for dealiasing this amounts to the need for filtering a 2/(n+1) fraction of each spectral dimension.
Resumo:
Background. Diabetic nephropathy is the leading cause of end-stage kidney failure worldwide. It is characterized by excessive extracellular matrix accumulation. Transforming growth factor beta 1 (TGF-ß1) is a fibrogenic cytokine playing a major role in the healing process and scarring by regulating extracellular matrix turnover, cell proliferation and epithelial mesanchymal transdifferentiation. Newly synthesized TGF-ß is released as a latent, biologically inactive complex. The cross-linking of the large latent TGF-ß to the extracellular matrix by transglutaminase 2 (TG2) is one of the key mechanisms of recruitment and activation of this cytokine. TG2 is an enzyme catalyzing an acyl transfer reaction leading to the formation of a stable e(?-glutamyl)-lysine cross-link between peptides.Methods. To investigate if changes in TG activity can modulate TGF-ß1 activation, we used the mink lung cell bioassay to assess TGF-ß activity in the streptozotocin model of diabetic nephropathy treated with TG inhibitor NTU281 and in TG2 overexpressing opossum kidney (OK) proximal tubular epithelial cells.Results. Application of the site-directed TG inhibitor NTU281 caused a 25% reduction in kidney levels of active TGF-ß1. Specific upregulation of TG2 in OK proximal tubular epithelial cells increased latent TGF-ß recruitment and activation by 20.7% and 19.7%, respectively, in co-cultures with latent TGF-ß binding protein producing fibroblasts.Conclusions. Regulation of TG2 directly influences the level of active TGF-ß1, and thus, TG inhibition may exert a renoprotective effect by targeting not only a direct extracellular matrix deposition but also TGF-ß1 activation and recruitment.
Resumo:
Glioblastoma Multiforme (GBM) is a highly malignant form of brain cancer for which there is no effective cure. The over-expression of a number of genes, including the epidermal growth factor receptor (EGFr), has been implicated as a causative factor of tumourigenesis. Ribozymes are a class of ribonucleic acid that possess enzymatic properties. They can inhibit gene-expression in a highly sequence specific manner by catalysing the trans-cleavage of target RNA. The potential use of synthetic hammerhead ribozymes as novel anti-brain tumour agents was investigated in this study. The successful use of synthetic, exogenously administered ribozymes for such applications will require chemical modifications that improve biological stability and a fundamental understanding of cellular uptake mechanisms. Chimeric 2'-O-methylated hammerhead ribozymes proved to be significantly more stable (>4000-fold) in serum than unmodified RNA ribozymes and exhibited high in vitro catalytic activity. The cellular association of an internally [32P]-labelled 2'-O-methylated chimeric ribozyme in U87-MG human glioma cells was temperature-, energy- and pH-dependent and involved an active process that could be competed with a variety of polyanions. Indications are that the predominant mechanism of uptake is by adsorptive and / or receptor mediated endocytosis. Twenty 2'-O-methylated chimeric ribozymes were designed to cleave various sites along the EGFr mRNA. In vitro, 18 ribozymes exhibited high activity in cleaving a complementary short substrate. Using LipofectAMINETM as a delivery agent, the efficacy of these ribozymes was evaluated in the A431 cell line, which expresses amplified levels of EGFr. Studies revealed that although the ribozymes were taken up by the cells and remained stable over a period of 4 days, no significant reduction in either EGFr expression or cell proliferation was evident. The presence of telomerase, a ribonucleoprotein responsible for telomere elongation, has been strongly associated with tumour progression. The biological activity of a 2'-O-methylated ribozyme targeted against the RNA component of telomerase was determined. The ribozyme exhibited specific dose-dependent inhibition of telomerase activity in U87-MG cell lysates with an IC50 of –4μM. When 4μM ribozyme was delivered to intact U87-MG cells, complexed to LipofectAMINETM, telomerase activity was significantly reduced to 74.5±4.17% of the untreated control. Free ribozyme showed no significant inhibitory effect demonstrating the importance of an appropriate delivery system for optimum delivery of exogenously administered ribozymes.
Resumo:
Glioblastoma multiforme (GBM) is a malignant brain tumour for which there is currently no effective treatment regime. It is thought to develop due to the overexpression of a number of genes, including the epidermal growth factor receptor (EGFR), which is found in over 40% of GBM. Novel forms of treatment such as antisense therapy may allow for the specific inhibition of aberrant genes and thus they are optimistic therapies for future treatment of GBM. Oligodeoxynucleotides (ODNs) are small pieces of DNA that are often modified to increase their stability to nucleases and can be targeted to the aberrant gene in order to inhibit it and thus prevent its transcription into protein. By specifically binding to mRNA in an antisense manner, they can bring about its degradation by a variety of mechanisms including the activation of RNase H and thus have great potential as therapeutic agents. One of the main drawbacks to the utilisation of this therapy so far is the lack of techniques that can successfully predict accessible regions on the target mRNA that the ODNs can bind to. DNA chip technology has been utilised here to predict target sequences on the EGFR mRNA and these ODNs (AS 1 and AS2) have been tested in vitro for their stability, uptake into cells and their efficacy on cellular growth, EGFR protein and mRNA. Studies showed that phosphorothioate and 2'O-methyl ODNs were significantly more stable than phosphodiester ODNs both in serum and serum-free conditions and that the mechanism of uptake into A431 cells was temperature dependent and more efficient with the use of optimised lipofectin. Efficacy results show that AS 1 and AS2 phosphorothioate antisense ODNs were capable of inhibiting cell proliferation by 69% ±4% and 65% ±4.5% respectively at 500nM in conjunction with a non-toxic dose of lipofectinTM used to enhance cellular delivery. Furthermore, control ODN sequences, 2' O-methyl derivatives and a third ODN sequence, that was found not to be capable of binding efficiently to the EGFR mRNA by DNA chip technology, showed no significant effect on cell proliferation. AS 1 almost completely inhibited EGFR protein levels within 48 hours with two doses of 500nM AS 1 with no effect on other EGFR family member proteins or by control sequences. RNA analysis showed a decrease in mRNA levels of 32.4% ±0.8% but techniques require further optimisation to confirm this. As there are variations found between human glioblastoma in situ and those developed as xenografts, analysis of effect of AS 1 and AS2 was performed on primary tumour cell lines derived from glioma patients. ODN treatment showed a specific knockdown of cell growth compared to any of the controls used. Furthermore, combination therapies were tested on A431 cell growth to determine the advantage of combining different antisense approaches and that of conventional drugs. Results varied between the combination treatments but indicated that with optimisation of treatment regimes and delivery techniques that combination therapies utilising antisense therapies would be plausible.
Resumo:
Hammerhead ribozymes are potent RNA molecules which have the potential to specifically inhibit gene expression by catalysing the trans-cleavage of mRNAs. However, they are unstable in biological fluids and cellular delivery poses a problem. Site-specific chemical modification of hammerhead ribozymes was evaluated as a means of enhancing biological stability. Chimeric, 2'-O-methylated ribozymes, containing only five unmodified ribonucleotides, were catalytically active in vitro (kcat = 1.46 min-1) and were significantly more stable in serum and lysosomal enzymes than unmodified (all-RNA) counterparts. Furthermore, they remained undegraded in cell-containing media for up to 8 hours. Stability enhancement allowed cellular uptake properties of radiolabelled ribozymes to be assessed following exogenous delivery. Studies in vulval and glial cell lines indicated that chimeric ribozymes became cell-associated via an inefficient process, which was energy and concentration dependant. A considerable proportion of ribozymes remained bound to cell-surface components, however, a small proportion (<1%) were internalised via mechanisms of adsorptive and / or receptor mediated endocytosis. Fluorescent microscopy indicated that ribozymes were localised within endosomal / lysosomal vesicles following cell entry. This was confirmed by immuno-electron microscopy, which allowed the detection of biotin-labelled ribozymes within the cell ultrastructure. Despite the predominant localisation within endocytic vesicles, a small proportion of internalised ribozymes appeared able to exit these compartments and penetrate target sites within the nucleus and cytoplasm. The ribozymes designed in this report were directed against the epidermal growth factor receptor mRNA, which is over-expressed in a malignant brain disease called glioblastoma multiforme. In order to examine the fate of ribozymes in the brain, the distribution of FITC-labelled ribozymes was examined following intra-cerebro ventricular injection to mice. FITC-ribozymes demonstrated high punctate pattern of distribution within the striatum and cortex, which appeared to represent localisation within cell bodies and dendritic processes. This suggested that delivery to glial cells in vivo may be possible. Finally, strategies were investigated to enhance the cellular delivery of ribozymes. Conjugation of ribozymes to anti~transferrin receptor antibodies improved cellular uptake 3-fold as a result of a specific interaction with transferrin receptors. Complexation with cationic liposomes also significantly improved cell association, however, some toxiclty was observed and this could be a limitation to their use. Overall, it would appear that hammerhead ribozymes can be chemically stabilised to allow direct exogenous administration in vivo. However, additional delivery strategies are probably required to improve cellular uptake, and thus, allow ribozymes to achieve their full potential as pharmaceutical agents. KEYWORDS: Catalytic
Resumo:
2-Phenylbenzothiazoles have structural similarities to the antioestrogenic 2-phenylindole, zindoxifene and to the oestrogenic isoflavone, genistein which also inhibits tyrosine kinases. Hydroxylated 2-phenylbenzothiazole derivatives were therefore produced and tested for oestrogenic and tyrosine kinase inhibitory activity. Synthesis of methoxy substituted 2-phenylbenzothiazoles was via the Jacobson method, demethylation being effected by boron tribromide at -70oC. Three amino substituted 2-phenylbenzothiazoles were also synthesised and tested for activity. Data is presented for oestrogen receptor binding activity, aromatase inhibitory activity, epidermal growth factor receptor tyrosine kinase (EGFRTK) inhibitory activity and cytotoxicity to ANN-1, 3T3, MCF-7 and WIDR cells. Oestrogen receptor binding affinity (RBA) was shown by five of the nine compounds tested. 2-(4-hydroxy)-6-hydroxybenzo-thiazole was the most active of the benzothiazoles tested (RBA 0.7). This is low but comparable to that of genistein. EGFRTK inhibitory activity was shown by four of the six benzothiazole derivatives tested; activity was comparable to that of genistein. Cytotoxicity assays have shown no selective toxicity of 2-phenylbenzothiazoles to any of the cell lines tested. Toxicity to MCF-7 cells was similar to that for other cell lines despite some compounds showing oestrogen receptor binding capacity. Amino-substituted 2-phenylbenzothiazoles showed selective toxicity towards transformed ANN-1 cells compared to normal 3T3 cells but the mechanism of this selectivity has not been established. Molecular modelling techniques, including CHEM-X, QUANTA and MOPAC were used to compare known ATP-competitive tyrosine kinase inhibitors with a model of ATP built from the crystal structure of the ATP-phosphoglycerate kinase complex. Structural features thought to be important to kinase inhibition were found and used to suggest further 2-phenylbenzothiazole analogues which may have improved activity.
Resumo:
Antisense oligonucleotides (AODNs) can selectively inhibit individual gene expression by binding specifically to rnRNA. The over-expression of the epidermal growth factor receptor (EGFR) has been observed in human breast and glioblastoma tumours and therefore AODNs designed to target the EGFR would be a logical approach to treat such tumours. However, poor pharmacokinetic/pharmacodynamic and cellular uptake properties of AODNs have limited their potential to become successful therapeutic agents. Biodegradable polymeric poly (lactide-co-glycolide) (P(LA-GA)) and dendrimer delivery systems may allow us to overcome these problems. The use of combination therapy of AODNs and cytotoxic agents such as 5-fluorouracil (5-FU) in biodegradable polymeric formulations may further improve therapeutic efficacy. AODN and 5-FU were either co-entrapped in a single microsphere formulation or individually entrapped in two separate microsphere formulations (double emulsion method) and release profiles determined in vitro. The release rates (biphasic) of the two agents were significantly slower when co-entrapped as a single microsphere formulation compared to those obtained with the separate formulations. Sustained release over 35 days was observed in both types of formulation. Naked and microsphere-loaded AODN and 5-FU (in separate formulations) were tested on an A431 vulval carcinoma cell line. Combining naked or encapsulated drugs produced a greater reduction in viable cell number as compared with either agent alone. However, controls and Western blotting indicated that non-sequence specific cytotoxic effects were responsible for the differences in viable cell number. The uptake properties of an anionic dendrimer based on a pentaerythritol structure covalently linked to AODNs (targeting the EGFR) have been characterised. The cellular uptake of AODN linked to the dendrimer was up to 3.5-fold higher in A431 cells as compared to naked AODN. Mechanistic studies suggested that receptor-mediated and adsorptive (binding protein-mediated) endocytosis were the predominant uptake mechanisms for the dendrimer-AODN. RNase H cleavage assay suggested that the dendrimer-AODN was able to bind and cleave the target site. A reduction of 20%, 28% and 45% in EGFR expression was observed with 0.05μM, 0.1μM and 0.5μM dendrimer-AODN treatments respectively with a reduction in viable cell number. These results indicated that the dendrimer delivery system may reduce viable cell number by an antisense specific mechanism.
Resumo:
Background - Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods - Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings - Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance - Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood.
Resumo:
Vascular endothelial growth factor-A (VEGF), which binds to both VEGF receptor-1 (Flt1) and VEGFR-2 (KDR/Flk-1), requires nitric oxide (NO) to induce angiogenesis in a cGMP-dependent manner. Here we show that VEGF-E, a VEGFR-2-selective ligand stimulates NO release and tube formation in human umbilical vein endothelial cells (HUVEC). Inhibition of phospholipase Cgamma (PLCgamma) with U73122 abrogated VEGF-E induced endothelial cell migration, tube formation and NO release. Inhibition of endothelial nitric oxide synthase (eNOS) using l-NNA blocked VEGF-E-induced NO release and angiogenesis. Pre-incubation of HUVEC with the soluble guanylate cyclase inhibitor, ODQ, or the protein kinase G (PKG) inhibitor, KT-5823, had no effect on angiogenesis suggesting that the action of VEGF-E is cGMP-independent. Our data provide the first demonstration that VEGFR-2-mediated NO signaling and subsequent angiogenesis is through a mechanism that is dependent on PLCgamma but independent of cGMP and PKG.