937 resultados para Extracellular digestion
Resumo:
Since the identification of the gene family of kallikrein related peptidases (KLKs), their function has been robustly studied at the biochemical level. In vitro biochemical studies have shown that KLK proteases are involved in a number of extracellular processes that initiate intracellular signaling pathways by hydrolysis, as reviewed in Chapters 8, 9, and 15, Volume 1. These events have been associated with more invasive phenotypes of ovarian, prostate, and other cancers. Concomitantly, aberrant expression of KLKs has been associated with poor prognosis of patients with ovarian and prostate cancer (Borgoño and Diamandis, 2004; Clements et al., 2004; Yousef and Diamandis, 2009), with prostate-specific antigen (PSA, KLK3) being a long standing, clinically employed biomarker for prostate cancer (Lilja et al., 2008). Data generated from patient samples in clinical studies, alongwith biochemical activity, suggests that KLKs function in the development and progression of these diseases. To bridge the gap between their function at the molecular level and the clinical need for efficacious treatment and prognostic biomarkers, functional assessment at the in vitro cellular level, using various culture models, is increasing, particularly in a three-dimensional (3D) context (Abbott, 2003; Bissell and Radisky, 2001; Pampaloni et al., 2007; Yamada and Cukierman, 2007).
Resumo:
Irritable bowel syndrome (IBS) is a common chronic disorder with a prevalence ranging from 5 to 10 % of the world's population. This condition is characterised by abdominal discomfort or pain, altered bowel habits, and often bloating and abdominal distension. IBS reduces quality of life in the same degree of impairment as major chronic diseases such as congestive heart failure and diabetes and the economic burden on the health care system and society is high. Abnormalities have been reported in the neuroendocrine peptides/amines of the stomach, small- and large intestine in patients with IBS. These abnormalities would cause disturbances in digestion, gastrointestinal motility and visceral hypersensitivity, which have been reported in patients with IBS. These abnormalities seem to contribute to the symptom development and appear to play a central role in the pathogenesis of IBS. Neuroendocrine peptides/amines are potential tools in the treatment and diagnosis of IBS. In particular, the cell density of duodenal chromogranin A expressing cells appears to be a good histopathological marker for the diagnosis of IBS with high sensitivity and specificity.
Resumo:
Return side streams from anaerobic digesters and dewatering facilities at wastewater treatment plants (WWTPs) contribute a significant proportion of the total nitrogen load on a mainstream process. Similarly, significant phosphate loads are also recirculated in biological nutrient removal (BNR) wastewater treatment plants. Ion exchange using a new material, known by the name MesoLite, shows strong potential for the removal of ammonia from these side streams and an opportunity to concurrently reduce phosphate levels. A pilot plant was designed and operated for several months on an ammonia rich centrate from a dewatering centrifuge at the Oxley Creek WWTP, Brisbane, Australia. The system operated with a detention time in the order of one hour and was operated for between 12 and 24 hours prior to regeneration with a sodium rich solution. The same pilot plant was used to demonstrate removal of phosphate from an abattoir wastewater stream at similar flow rates. Using MesoLite materials, >90% reduction of ammonia was achieved in the centrate side stream. A full-scale process would reduce the total nitrogen load at the Oxley Creek WWTP by at least 18%. This reduction in nitrogen load consequently improves the TKN/COD ratio of the influent and enhances the nitrogen removal performance of the biological nutrient removal process.
Resumo:
Articular cartilage is a complex structure with an architecture in which fluid-swollen proteoglycans constrained within a 3D network of collagen fibrils. Because of the complexity of the cartilage structure, the relationship between its mechanical behaviours at the macroscale level and its components at the micro-scale level are not completely understood. The research objective in this thesis is to create a new model of articular cartilage that can be used to simulate and obtain insight into the micro-macro-interaction and mechanisms underlying its mechanical responses during physiological function. The new model of articular cartilage has two characteristics, namely: i) not use fibre-reinforced composite material idealization ii) Provide a framework for that it does probing the micro mechanism of the fluid-solid interaction underlying the deformation of articular cartilage using simple rules of repartition instead of constitutive / physical laws and intuitive curve-fitting. Even though there are various microstructural and mechanical behaviours that can be studied, the scope of this thesis is limited to osmotic pressure formation and distribution and their influence on cartilage fluid diffusion and percolation, which in turn governs the deformation of the compression-loaded tissue. The study can be divided into two stages. In the first stage, the distributions and concentrations of proteoglycans, collagen and water were investigated using histological protocols. Based on this, the structure of cartilage was conceptualised as microscopic osmotic units that consist of these constituents that were distributed according to histological results. These units were repeated three-dimensionally to form the structural model of articular cartilage. In the second stage, cellular automata were incorporated into the resulting matrix (lattice) to simulate the osmotic pressure of the fluid and the movement of water within and out of the matrix; following the osmotic pressure gradient in accordance with the chosen rule of repartition of the pressure. The outcome of this study is the new model of articular cartilage that can be used to simulate and study the micromechanical behaviours of cartilage under different conditions of health and loading. These behaviours are illuminated at the microscale level using the socalled neighbourhood rules developed in the thesis in accordance with the typical requirements of cellular automata modelling. Using these rules and relevant Boundary Conditions to simulate pressure distribution and related fluid motion produced significant results that provided the following insight into the relationships between osmotic pressure gradient and associated fluid micromovement, and the deformation of the matrix. For example, it could be concluded that: 1. It is possible to model articular cartilage with the agent-based model of cellular automata and the Margolus neighbourhood rule. 2. The concept of 3D inter connected osmotic units is a viable structural model for the extracellular matrix of articular cartilage. 3. Different rules of osmotic pressure advection lead to different patterns of deformation in the cartilage matrix, enabling an insight into how this micromechanism influences macromechanical deformation. 4. When features such as transition coefficient were changed, permeability (representing change) is altered due to the change in concentrations of collagen, proteoglycans (i.e. degenerative conditions), the deformation process is impacted. 5. The boundary conditions also influence the relationship between osmotic pressure gradient and fluid movement at the micro-scale level. The outcomes are important to cartilage research since we can use these to study the microscale damage in the cartilage matrix. From this, we are able to monitor related diseases and their progression leading to potential insight into drug-cartilage interaction for treatment. This innovative model is an incremental progress on attempts at creating further computational modelling approaches to cartilage research and other fluid-saturated tissues and material systems.
Resumo:
In wastewater treatment plants based on anaerobic digestion, supernatant and outflows from sludge dewatering systems contain significantly high amount of ammonium. Generally, these waters are returned to the head of wastewater treatment plant (WWTP), thereby increasing the total nitrogen load of the influent flow. Ammonium from these waters can be recovered and commercially utilised using novel ion-exchange materials. Mackinnon et al. have described an approach for removal and recovery of ammonium from side stream centrate returns obtained from anaerobic digester of a typical WWTP. Most of the ammonium from side streams can potentially be removed, which significantly reduces overall inlet demand at a WWTP. However, the extent of reduction achieved depends on the level of ammonium and flow-rate in the side stream. The exchange efficiency of the ion-exchange material, MesoLite, used in the ammonium recovery process deteriorates with long-term use due to mechanical degradation and use of regenerant. To ensure that a sustainable process is utilised a range of potential applications for this “spent” MesoLite have been evaluated. The primary focus of evaluations has been use of ammonium-loaded MesoLite as a source of nitrogen and growth medium for plants. A MesoLite fertiliser has advantage over soluble fertilisers in that N is held on an insoluble matrix and is gradually released according to exchange equilibria. Many conventional N fertilisers are water-soluble and thus, instantly release all applied N into the soil solution. Loss of nutrient commonly occurs through volatilisation and/or leaching. On average, up to half of the N delivered by a typical soluble fertiliser can be lost through these processes. In this context, use of ammonium-loaded MesoLite as a fertiliser has been evaluated using standard greenhouse and field-based experiments for low fertility soils. Rye grass, a suitable test species for greenhouse trials, was grown in 1kg pots over a period of several weeks with regular irrigation. Nitrogen was applied at a range of rates using a chemical fertiliser as a control and using two MesoLite fertilisers. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks, and dry plant mass and N concentrations were determined. At all nitrogen application rates, ammonium-loaded MesoLite produced higher plant mass than plants fertilised by the chemical fertiliser. The lower fertiliser effectiveness of the chemical fertliser is attributed to possible loss of some N through volatilisation. The MesoLite fertilisers did not show any adverse effect on availability of macro and trace nutrients, as shown by lack of deficiency symptoms, dry matter yield and plant analyses. Nitrogen loaded on to MesoLite in the form of exchanged ammonium is readily available to plants while remaining protected from losses via leaching and volatilisation. Spent MesoLite appears to be a suitable and effective fertiliser for a wide range of soils, particularly sandy soils with poor nutrient holding capacity.
Resumo:
OBJECTIVE: Chemoresistance is a critical feature of advanced ovarian cancer with only 30% of patients surviving longer than 5 years. We have previously shown that four kallikrein-related (KLK) peptidases, KLK4, KLK5, KLK6 and KLK7 (KLK4-7), are implicated in peritoneal invasion and tumour growth, but underlying mechanisms were not identified. We also reported that KLK7 overexpression confers chemoresistance to paclitaxel, and cell survival via integrins. In this study, we further explored the functional consequenses of overexpression of all four KLKs (KLK4-7) simultaneously in the ovarian cancer cell line, OV-MZ-6, and its impact on integrin expression and signalling, cell adhesion and survival as contributors to chemoresistance and metastatic progression. METHODS: Quantitative gene and protein expression analyses, confocal microscopy, cell adhesion and chemosensitivity assays were performed. RESULTS: Expression of α5β1/αvβ3 integrins was downregulated upon combined stable KLK4-7 overexpression in OV-MZ-6 cells. Accordingly, the adhesion of these cells to vitronectin and fibronectin, the extracellular matrix binding proteins of α5β1/αvβ3 integrins and two predominant proteins of the peritoneal matrix, was decreased. KLK4-7-transfected cells were more resistant to paclitaxel (10-100 nmol/L: 38-54%), but not to carboplatin, which was associated with decreased apoptotic stimuli. However, the KLK4-7-induced paclitaxel resistance was not blocked by the MEK1/2 inhibitor, U0126. CONCLUSIONS: This study demonstrates that combined KLK4-7 expression by ovarian cancer cells promotes reduced integrin expression with consequently less cell-matrix attachment, and insensitivity to paclitaxel mediated by complex integrin and MAPK independent interactions, indicative of a malignant phenotype and disease progression suggesting a role for these KLKs in this process.
Resumo:
Melt electrospinning in a direct writing mode is a recent additive manufacturing approach to fabricate porous scaffolds for tissue engineering applications. In this study, we describe porous and cell-invasive poly (ε-caprolactone) scaffolds fabricated by combining melt electrospinning and a programmable x–y stage. Fibers were 7.5 ± 1.6 µm in diameter and separated by interfiber distances ranging from 8 to 133 µm, with an average of 46 ± 22 µm. Micro-computed tomography revealed that the resulting scaffolds had a highly porous (87%), three-dimensional structure. Due to the high porosity and interconnectivity of the scaffolds, a top-seeding method was adequate to achieve fibroblast penetration, with cells present throughout and underneath the scaffold. This was confirmed histologically, whereby a 3D fibroblast-scaffold construct with full cellular penetration was produced after 14 days in vitro. Immunohistochemistry was used to confirm the presence and even distribution of the key dermal extracellular matrix proteins, collagen type I and fibronectin. These results show that melt electrospinning in a direct writing mode can produce cell invasive scaffolds, using simple top-seeding approaches.
Resumo:
It is hypothesized that increased plasma or serum concentrations of extracellular heat shock proteins (eHSP) serve as a danger signal to the innate immune system. Cellular binding of eHSP leads to activation of NK cells and monocytes, as measured by their increased cytokine production, mitotic division and killing capacity. We examined whether eHSP binds to NK lymphocytes in vivo in athletes performing endurance exercise in the heat. Eighteen trained male runners ran at 70% VO2max at 35 degrees C and 40% relative humidity. Venous blood collected before, after and 1.5 h after exercise was analysed for leukocyte distribution, phenotype and eHSP70. NK cell-enriched samples were examined for co-localization of CD94 and eHSP70 expression. Plasma eHSP-70 concentration was measured by ELISA. Subjects ran for approximately 50 min, which elicited a reversible leukocytosis. NK cell count increased 83% (p < 0.01) immediately after exercise, then decreased to 66% of the resting level 1.5 h after exercise (p < 0.05). Plasma eHSP concentration increased 167% after exercise and remained elevated (by up to 71%) 1.5 h after exercise (p < 0.01). eHSP was expressed on both NK cells and monocytes at all times; the count of NK cells positive for eHSP doubled from 0.04 +/- 0.02 10(9)/L (mean +/- SD) to 0.08 +/- 0.06 10(9)/L after exercise. In summary, exercise in the heat increased free plasma eHSP concentration, and the eHSP co-localized with CD94 on NK cells. These data confirm the link between exercise and activation of the innate immune system.
Resumo:
Polyvinylpyrrolidone–iodine (Povidone-iodine, PVP-I) is widely used as an antiseptic agent for lavation during joint surgery; however, the biological effects of PVP–I on cells from joint tissue are unknown. This study examined the biocompatibility and biological effects of PVP–I on cells from joint tissue, with the aim of optimizing cell-scaffold based joint repair. Cells from joint tissue, including cartilage derived progenitor cells (CPC), subchondral bone derived osteoblast and bone marrow derived mesenchymal stem cells (BM-MSC) were isolated. The concentration-dependent effects of PVP–I on cell proliferation, migration and differentiation were evaluated. Additionally, the efficacy and mechanism of a PVP–I loaded bilayer collagen scaffold for osteochondral defect repair was investigated in a rabbit model. A micromolar concentration of PVP–I was found not to affect cell proliferation, CPC migration or extracellular matrix production. Interestingly, micromolar concentrations of PVP–I promote osteogenic differentiation of BM-MSC, as evidenced by up-regulation of RUNX2 and Osteocalcin gene expression, as well as increased mineralization on the three-dimensional scaffold. PVP–I treatment of collagen scaffolds significantly increased fibronectin binding onto the scaffold surface and collagen type I protein synthesis of cultured BM-MSC. Implantation of PVP–I treated collagen scaffolds into rabbit osteochondral defect significantly enhanced subchondral bone regeneration at 6 weeks post-surgery compared with the scaffold alone (subchondral bone histological score of 8.80 ± 1.64 vs. 3.8 ± 2.19, p < 0.05). The biocompatibility and pro-osteogenic activity of PVP–I on the cells from joint tissue and the enhanced subchondral bone formation in PVP–I treated scaffolds would thus indicate the potential of PVP–I for osteochondral defect repair.
Resumo:
Diet Induced Thermogenesis (DIT) is the energy expended consequent to meal consumption, and reflects the energy required for the processing and digestion of food consumed throughout each day. Although DIT is the total energy expended across a day in digestive processes to a number of meals, most studies measure thermogenesis in response to a single meal (Meal Induced Thermogenesis: MIT) as a representation of an individual’s thermogenic response to acute food ingestion. As a component of energy expenditure, DIT may have a contributing role in weight gain and weight loss. While the evidence is inconsistent, research has tended to reveal a suppressed MIT response in obese compared to lean individuals, which identifies individuals with an efficient storage of food energy, hence a greater tendency for weight gain. Appetite is another factor regulating body weight through its influence on energy intake. Preliminary research has shown a potential link between MIT and postprandial appetite as both are responses to food ingestion and have a similar response dependent upon the macronutrient content of food. There is a growing interest in understanding how both MIT and appetite are modified with changes in diet, activity levels and body size. However, the findings from MIT research have been highly inconsistent, potentially due to the vastly divergent protocols used for its measurement. Therefore, the main theme of this thesis was firstly, to address some of the methodological issues associated with measuring MIT. Additionally this thesis aimed to measure postprandial appetite simultaneously to MIT to test for any relationships between these meal-induced variables and to assess changes that occur in MIT and postprandial appetite during periods of energy restriction (ER) and following weight loss. Two separate studies were conducted to achieve these aims. Based on the increasing prevalence of obesity, it is important to develop accurate methodologies for measuring the components potentially contributing to its development and to understand the variability within these variables. Therefore, the aim of Study One was to establish a protocol for measuring the thermogenic response to a single test meal (MIT), as a representation of DIT across a day. This was done by determining the reproducibility of MIT with a continuous measurement protocol and determining the effect of measurement duration. The benefit of a fixed resting metabolic rate (RMR), which is a single measure of RMR used to calculate each subsequent measure of MIT, compared to separate baseline RMRs, which are separate measures of RMR measured immediately prior to each MIT test meal to calculate each measure of MIT, was also assessed to determine the method with greater reproducibility. Subsidiary aims were to measure postprandial appetite simultaneously to MIT, to determine its reproducibility between days and to assess potential relationships between these two variables. Ten healthy individuals (5 males, 5 females, age = 30.2 ± 7.6 years, BMI = 22.3 ± 1.9 kg/m2, %Fat Mass = 27.6 ± 5.9%) undertook three testing sessions within a 1-4 week time period. During the first visit, participants had their body composition measured using DXA for descriptive purposes, then had an initial 30-minute measure of RMR to familiarise them with the testing and to be used as a fixed baseline for calculating MIT. During the second and third testing sessions, MIT was measured. Measures of RMR and MIT were undertaken using a metabolic cart with a ventilated hood to measure energy expenditure via indirect calorimetry with participants in a semi-reclined position. The procedure on each MIT test day was: 1) a baseline RMR measured for 30 minutes, 2) a 15-minute break in the measure to consume a standard 576 kcal breakfast (54.3% CHO, 14.3% PRO, 31.4% FAT), comprising muesli, milk toast, butter, jam and juice, and 3) six hours of measuring MIT with two, ten-minute breaks at 3 and 4.5 hours for participants to visit the bathroom. On the MIT test days, pre and post breakfast then at 45-minute intervals, participants rated their subjective appetite, alertness and comfort on visual analogue scales (VAS). Prior to each test, participants were required to be fasted for 12 hours, and have undertaken no high intensity physical activity for the previous 48 hours. Despite no significant group changes in the MIT response between days, individual variability was high with an average between-day CV of 33%, which was not significantly improved by the use of a fixed RMR to 31%. The 95% limits of agreements which ranged from 9.9% of energy intake (%EI) to -10.7%EI with the baseline RMRs and between 9.6%EI to -12.4%EI with the fixed RMR, indicated very large changes relative to the size of the average MIT response (MIT 1: 8.4%EI, 13.3%EI; MIT 2: 8.8%EI, 14.7%EI; baseline and fixed RMRs respectively). After just three hours, the between-day CV with the baseline RMR was 26%, which may indicate an enhanced MIT reproducibility with shorter measurement durations. On average, 76, 89, and 96% of the six-hour MIT response was completed within three, four and five hours, respectively. Strong correlations were found between MIT at each of these time points and the total six-hour MIT (range for correlations r = 0.990 to 0.998; P < 0.01). The reproducibility of the proportion of the six-hour MIT completed at 3, 4 and 5 hours was reproducible (between-day CVs ≤ 8.5%). This indicated the suitability to use shorter durations on repeated occasions and a similar percent of the total response to be completed. There was a lack of strong evidence of any relationship between the magnitude of the MIT response and subjective postprandial appetite. Given a six-hour protocol places a considerable burden on participants, these results suggests that a post-meal measurement period of only three hours is sufficient to produce valid information on the metabolic response to a meal. However while there was no mean change in MIT between test days, individual variability was large. Further research is required to better understand which factors best explain the between-day variability in this physiological measure. With such a high prevalence of obesity, dieting has become a necessity to reduce body weight. However, during periods of ER, metabolic and appetite adaptations can occur which may impede weight loss. Understanding how metabolic and appetite factors change during ER and weight loss is important for designing optimal weight loss protocols. The purpose of Study Two was to measure the changes in the MIT response and subjective postprandial appetite during either continuous (CONT) or intermittent (INT) ER and following post diet energy balance (post-diet EB). Thirty-six obese male participants were randomly assigned to either the CONT (Age = 38.6 ± 7.0 years, weight = 109.8 ± 9.2 kg, % fat mass = 38.2 ± 5.2%) or INT diet groups (Age = 39.1 ± 9.1 years, weight = 107.1 ± 12.5 kg, % fat mass = 39.6 ± 6.8%). The study was divided into three phases: a four-week baseline (BL) phase where participants were provided with a diet to maintain body weight, an ER phase lasting either 16 (CONT) or 30 (INT) weeks, where participants were provided with a diet which supplied 67% of their energy balance requirements to induce weight loss and an eight-week post-diet EB phase, providing a diet to maintain body weight post weight loss. The INT ER phase was delivered as eight, two-week blocks of ER interspersed with two-week blocks designed to achieve weight maintenance. Energy requirements for each phase were predicted based on measured RMR, and adjusted throughout the study to account for changes in RMR. All participants completed MIT and appetite tests during BL and the ER phase. Nine CONT and 15 INT participants completed the post-diet EB MIT and 14 INT and 15 CONT participants completed the post-diet EB appetite tests. The MIT test day protocol was as follows: 1) a baseline RMR measured for 30 minutes, 2) a 15-minute break in the measure to consume a standard breakfast meal (874 kcal, 53.3% CHO, 14.5% PRO, 32.2% FAT), and 3) three hours of measuring MIT. MIT was calculated as the energy expenditure above the pre-meal RMR. Appetite test days were undertaken on a separate day using the same 576 kcal breakfast used in Study One. VAS were used to assess appetite pre and post breakfast, at one hour post breakfast then a further three times at 45-minute intervals. Appetite ratings were calculated for hunger and fullness as both the intra-meal change in appetite and the AUC. The three-hour MIT response at BL, ER and post-diet EB respectively were 5.4 ± 1.4%EI, 5.1 ± 1.3%EI and 5.0 ± 0.8%EI for the CONT group and 4.4 ± 1.0%EI, 4.7 ± 1.0%EI and 4.8 ± 0.8%EI for the INT group. Compared to BL, neither group had significant changes in their MIT response during ER or post-diet EB. There were no significant time by group interactions (p = 0.17) indicating a similar response to ER and post-diet EB in both groups. Contrary to what was hypothesised, there was a significant increase in postprandial AUC fullness in response to ER in both groups (p < 0.05). However, there were no significant changes in any of the other postprandial hunger or fullness variables. Despite no changes in MIT in both the CONT or INT group in response to ER or post-diet EB and only a minor increase in postprandial AUC fullness, the individual changes in MIT and postprandial appetite in response to ER were large. However those with the greatest MIT changes did not have the greatest changes in postprandial appetite. This study shows that postprandial appetite and MIT are unlikely to be altered during ER and are unlikely to hinder weight loss. Additionally, there were no changes in MIT in response to weight loss, indicating that body weight did not influence the magnitude of the MIT response. There were large individual changes in both variables, however further research is required to determine whether these changes were real compensatory changes to ER or simply between-day variation. Overall, the results of this thesis add to the current literature by showing the large variability of continuous MIT measurements, which make it difficult to compare MIT between groups and in response to diet interventions. This thesis was able to provide evidence to suggest that shorter measures may provide equally valid information about the total MIT response and can therefore be utilised in future research in order to reduce the burden of long measurements durations. This thesis indicates that MIT and postprandial subjective appetite are most likely independent of each other. This thesis also shows that, on average, energy restriction was not associated with compensatory changes in MIT and postprandial appetite that would have impeded weight loss. However, the large inter-individual variability supports the need to examine individual responses in more detail.
Resumo:
In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix (ECM), has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze-drying and subsequent cross-linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physico-chemical properties of scaffolds including tensile strength, swelling behavior and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices′ cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent (HSE) wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re-epithelization — a pre-requisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering.
Resumo:
Members of the insulin-like growth factor (IGF) family have been shown to play critical roles in normal growth and development, as well as in tumour biology. The IGF system is complex and the biological effects of the IGFs are determined by their diverse interactions between many molecules, including their interactions with extracellular matrix (ECM) proteins. Recent studies have demonstrated that IGFs associate with the ECM protein vitronectin (VN) through IGF-binding proteins (IGFBP) and that this interaction modulates IGF-stimulated biological functions, namely cell migration and cell survival through the cooperative involvement of the type-I IGF receptor (IGF-1R) and VN-binding integrins. Since IGFs play important roles in the transformation and progression of breast cancer and VN has been found to be over-expressed at the leading edge of breast tumours, this project aimed to describe the effects of IGF-I:VN interactions on breast cell function. This was undertaken to dissect the molecular mechanisms underlying IGF-I:VN-induced responses and to design inhibitors to block the effects of such interactions. The studies described herein demonstrate that the increase in migration of MCF-7 breast cancer cells in response to the IGF-I:IGFBP-5:VN complex is accompanied by differential expression of genes known to be involved in migration, invasion and/or survival, including Tissue-factor (TF), Stratifin (SFN), Ephrin-B2, Sharp-2 and PAI-1. This „migration gene signature‟ was confirmed using real-time PCR analysis. Substitution of the native IGF-I within the IGF-I:IGFBP:VN complex with the IGF-I analogue, \[L24]\[A31]-IGF-I, which has a reduced affinity for the IGF-1R, failed to stimulate cell migration and interestingly, also failed to induce the differential gene expression. This supports the involvement of the IGF-1R in mediating these changes in gene expression. Furthermore, lentiviral shRNA-mediated stable knockdown of TF and SFN completely abrogated the increased cell migration induced by IGF-I:IGFBP:VN complexes in MCF-7 cells. Indeed, when these cells were grown in 3D Matrigel™ cultures a decrease in the overall size of the 3D spheroids in response to the IGF-I:IGFBP:VN complexes was observed compared to the parental MCF-7 cells. This suggests that TF and SFN have a role in complex-stimulated cell survival. Moreover, signalling studies performed on cells with the reduced expression of either TF or SFN had a decreased IGF-1R activation, suggesting the involvement of signalling pathways downstream of IGF-1R in TF- and/or SFN-mediated cell migration and cell survival. Taken together, these studies provide evidence for a common mechanism activated downstream of the IGF-1R that induces the expression of the „migration gene signature‟ in response to the IGF-I:IGFBP:VN complex that confers breast cancer cells the propensity to migrate and survive. Given the functional significance of the interdependence of ECM and growth factor (GF) interactions in stimulating processes key to breast cancer progression, this project aimed at developing strategies to prevent such growth factor:ECM interactions in an effort to inhibit the downstream functional effects. This may result in the reduction in the levels of ECM-bound IGF-I present in close proximity to the cells, thereby leading to a reduction in the stimulation of IGF-1R present on the cell surface. Indeed, the inhibition of IGF-I-mediated effects through the disruption of its association with ECM would not alter the physiological levels of IGF-I and potentially only exert effects in situations where abnormal over expression of ECM proteins are found; namely carcinomas and hyperproliferative diseases. In summary, this PhD project has identified novel, innovative and realistic strategies that can be used in vitro to inhibit the functions exerted by the IGF-I:IGFBP:VN multiprotein complexes critical for cancer progression, with a potential to be translated into in vivo investigations. Furthermore, TF and SFN were found to mediate IGF-I:IGFBP:VN-induced effects, thereby revealing their potential to be used as therapeutic targets or as predictive biomarkers for the efficacy of IGF-1R targeting therapies in breast cancer patients. In addition to its therapeutic and clinical scope, this PhD project has significantly contributed to the understanding of the role of the IGF system in breast tumour biology by providing valuable new information on the mechanistic events underpinning IGF-I:VN-mediated effects on breast cell functions. Furthermore, this is the first instance where favourable binding sites for IGF-II, IGFBP-3 and IGFBP-5 on VN have been identified. Taken together, this study has functionally characterised the interactions between IGF-I and VN and through innovative strategies has provided a platform for the development of novel therapies targeting these interactions and their downstream effects.
Resumo:
The cancer stem cell hypothesis states that tumours arise from cells with the ability to self-renew and differentiate into multiple cell types, and that these cells persist in tumors as a distinct population that can cause disease relapse and hence metastasis. The crux of this hypothesis is that these cells are the only cells capable of, by themselves, giving rise to new tumours. What proportion of a tumour consists of these stem cells, where are they localised, how are they regulated, and how can we identify them? The stromal cells embedded within the extracellular matrix (ECM) not only provide a scaffold but also produce ECM constituents for use by stem cells. Heparan sulfate proteoglycans (HSPGs) are ubiquitous to this cell niche and interact with a large number of ligands including growth factors, their receptors, and ECM structural components. It is still unclear whether ECM degradation and subsequent metastasis is a result of proteases produced by the tumour cells themselves or by cells within the stromal compartment. The identification of the cellular origin of cancer stem cells along with microenvironmental changes involved in the initiation, progression and the malignant conversion of all cancers is critical to the development of targeted therapeutics. As ubiquitous members of the ECM microenvironment and hence the cancer cell niche, HSPGs are candidates for a central role in these processes.
Resumo:
Background: The insulin-like growth factor (IGF) system is composed of ligands and receptors which regulate cell proliferation, survival, differentiation and migration. Some functions are regulated via intracellular signaling cascades, others by involvement of the extracellular milieu, including binding proteins and other extracellular matrix proteins. However, understanding of their functions and the exact nature of these interactions remains incomplete. Methods: IGF-I was PEGylated at its lysine sites - K27, K65 and K68. Binding of PEG-IGF-I to the IGFBPs was analyzed using BIAcore and its ability to activate the IGF-IR was assessed using IGF-IR phosphorylation assay. Furthermore, functional consequences of PEGylating the lysine residues of IGF-I was investigated using cell viability and cell migration assays. In addition, particular downstream signaling pathways regularly implicated in these mechanisms were also dissected using phospho-AKT and phospho-ERK1/2 assays. Results: In this study, IGF-I specifically PEGylated at lysine 27 (PEG-K27), 65 (PEG-K65) or 68 (PEG-K68) were employed. Receptor phosphorylation was only reduced by 2-fold with PEG-K65 and PEG-K68 over all the time points tested, and as observed in two cell types, 3T3 fibroblasts and MCF-7 breast cancer cells. PEGylation at K27 resulted in a much larger effect, with more than 10-fold lower activation for 3T3 fibroblasts and a ~3 fold reduced IGF-IR activation for MCF-7 breast cancer cells over 15 minutes. In addition, all PEG-IGF-I variants demonstrated a ten-fold reduction in the association rate to IGF binding proteins (IGFBPs). Functionally, all PEG variants completely lost their ability to induce cell migration in the presence of IGFBP-3/vitronectin (VN) complexes as compared to IGF-I; in contrast, cell viability was fully preserved. Further investigations into the downstream signaling pathways revealed that the PI3-K/AKT pathway was preferentially affected upon treatment with the PEG-IGF-I variants compared to the MAPK/ERK pathway. Conclusion: PEGylation of IGF-I has an impact on cell migration but not cell viability. General significance: PEG-IGF-I may differentially modulate IGF-I mediated functions that are dependent on its interaction with its receptor as well as key extracellular proteins such as VN and IGFBPs.
Resumo:
Background Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. Methods We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. Results In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. Conclusion We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in vivo. Induction of MMP gene expression in both the epithelial tumour cells and surrounding stromal cells is associated with increased metastatic potential. Our data demonstrate the contribution of the stroma to epithelial MMP gene expression, and highlight the complexity of the role of MMPs in the stromal-epithelial interactions within breast carcinoma.