980 resultados para Euclidean Gravity
Resumo:
A model for static foam drainage, based on the pentagonal dodecahedral shape of bubbles, that takes into account the surface mobility of both films and Plateau border walls has been developed. The model divides the Plateau borders into nearly horizontal and nearly vertical categories and assigns different roles to them. The films are assumed to drain into all the adjacent Plateau borders equally. The horizontal Plateau borders are assumed to receive liquid from films and drain into vertical Plateau borders, which in turn form the main component for gravity drainage. The model yields the liquid holdup values for films, horizontal Plateau borders and vertical Plateau borders as functions of height and time. The model has been tested on static foams whose cumulative drainage was measured as a function of time. The experimental data on the effect of foam height, initial holdup, surface viscosity, etc. can be explained by the model quantitatively.
Resumo:
The presence of cell agglomerates has been found to influence significantly the rates of liquid drainage from static foams. The process of drainage has been modelled by considering the foam to be made of pentagonal dodecahedral bubbles yielding films, nearly horizontal and nearly vertical Plateau borders. The films are assumed to drain into both kinds of Plateau borders equally. The horizontal Plateau borders are assumed to receive liquid from the films and drain into the vertical Plateau borders, which, in turn, form the main flow paths for gravity drainage. The drainage process is assumed to be similar to that for pure liquid until a stage is reached where the size of the cell agglomerates become equivalent to those of films and Plateau borders. Thereafter, a squeezing flow mechanism has been formulated where the aggromerates deform and flow. The model based on the above assumptions has been verified against experimental results and has been found to predict not only drainage data but also the separation of cell agglomerates from broths.
Resumo:
We study the accretion of modified Chaplygin gas upon different types of black holes. Modified Chaplygin gas is one of the best candidates for a combined model of dark matter and dark energy. In addition, from a field theoretical point of view the modified Chaplygin gas model is equivalent to that of a scalar field having a self-interacting potential. We formulate the equations related to both spherical accretion and disc accretion, and respective winds. The corresponding numerical solutions of the flow, particularly of velocity, are presented and analysed. We show that the accretion-wind system of modified Chaplygin gas dramatically alters the wind solutions, producing faster winds, upon changes in physical parameters, while accretion solutions qualitatively remain unaffected. This implies that modified Chaplygin gas is more prone to produce outflow which is the natural consequence of the dark energy into the system.
Resumo:
We consider the problem of computing an approximate minimum cycle basis of an undirected non-negative edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. Although in most such applications any cycle basis can be used, a low weight cycle basis often translates to better performance and/or numerical stability. Despite the fact that the problem can be solved exactly in polynomial time, we design approximation algorithms since the performance of the exact algorithms may be too expensive for some practical applications. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time O(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time O(n(3+2/k) ), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega) ) bound. We also present a 2-approximation algorithm with expected running time O(M-omega root n log n), a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.
Resumo:
Single crystals (up to 1 cm size) of K, Rb and Cs periodates have been grown in silica gel. In general, good quality crystals were obtained in gel of specific gravity 1.04 and pH 4. The metal/iodine ratios were determined and compared with calculated values. Morphological studies were carried out using a bicircle optical goniometer. Other characterization methods include X-ray diffraction, optical absorption, differential scanning calorimetry and optical microscopy. Microscopic examination of CsIO4 crystals in particular has revealed the existence of ferroelastic domains in the crystal. The structural basis for the occurence of ferroelasticity in this crystal is discussed and the high temperature space group is predicted.
Resumo:
It is found that the inclusion of higher derivative terms in the gravitational action along with concepts of phase transition and spontaneous symmetry breaking leads to some novel consequence. The Ricci scalar plays the dual role, like a physical field as well as a geometrical field. One gets Klein-Gordon equation for the emerging field and the corresponding quanta of geometry are called Riccions. For the early universe the model removes singularity along with inflation. In higher dimensional gravity the Riccions can break into spin half particle and antiparticle along with breaking of left-right symmetry. Most tantalizing consequences is the emergence of the physical universe from the geometry in the extreme past. Riccions can Bose condense and may account for the dark matter.
Resumo:
We study the hydrodynamic properties of strongly coupled SU(N) Yang-Mills theory of the D1-brane at finite temperature and at a non-zero density of R-charge in the framework of gauge/gravity duality. The gravity dual description involves a charged black hole solution of an Einstein-Maxwell-dilaton system in 3 dimensions which is obtained by a consistent truncation of the spinning D1-brane in 10 dimensions. We evaluate thermal and electrical conductivity as well as the bulk viscosity as a function of the chemical potential conjugate to the R-charges of the D1-brane. We show that the ratio of bulk viscosity to entropy density is independent of the chemical potential and is equal to 1/4 pi. The thermal conductivity and bulk viscosity obey a relationship similar to the Wiedemann-Franz law. We show that at the boundary of thermodynamic stability, the charge diffusion mode becomes unstable and the transport coefficients exhibit critical behaviour. Our method for evaluating the transport coefficients relies on expressing the second order differential equations in terms of a first order equation which dictates the radial evolution of the transport coefficient. The radial evolution equations can be solved exactly for the transport coefficients of our interest. We observe that transport coefficients of the D1-brane theory are related to that of the M2-brane by an overall proportionality constant which sets the dimensions.
Resumo:
We have modeled the rotation curves of 21 galaxies observed by Amram et al. (1992), by combining the effects of rigid rotation, gravity, and turbulence. The main motivation behind such modeling is to study the formation of coherent structures in turbulent media and explore its role in the large-scale structures of the universe. The values of the parameters such as mass, turbulent velocity, and angular velocity derived from the rotation curve fits are in good agreement with those derived from the prevalent models.
Resumo:
We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flow is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.
Resumo:
We address the problem of designing codes for specific applications using deterministic annealing. Designing a block code over any finite dimensional space may be thought of as forming the corresponding number of clusters over the particular dimensional space. We have shown that the total distortion incurred in encoding a training set is related to the probability of correct reception over a symmetric channel. While conventional deterministic annealing make use of the Euclidean squared error distance measure, we have developed an algorithm that can be used for clustering with Hamming distance as the distance measure, which is required in the error correcting, scenario.
Resumo:
Drop tube provides a low-cost alternative to study the influence of microgravity in materials processing. In the present paper, the current status of the drop tubes and associated experiments on materials processing are reviewed. Emphasis is placed on the advantages and limitations of these studies. It is pointed out that despite size limitation, large opportunities exist to study the fundamental aspects of the influence of gravity in materials processing.
Resumo:
The physics potential of e(+) e(-) linear colliders is summarized in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, i.e. compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders lip to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e(+) e(-) linear colliders and the high precision with which the properties of particles and their interactions can be analyzed, define an exciting physics program complementary to hadron machines. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A vertical jet of water impinging on a horizontal surface produces a radial film flow followed by a circular hydraulic jump. We report a phenomenon where fairly large (1 mi) drops of liquid levitate just upstream of the jump on a thin air layer between the drop and the film flow. We explain the phenomenon using lubrication theory. Bearing action both in the air film and the water film seems to be necessary to support large drops. Horizontal support is given to the drop by the hydraulic jump. A variety of drop shapes is observed depending on the volume of the drop and liquid properties. We show that interaction of the forces due to gravity, surface tension, viscosity and inertia produces these various shapes.
Resumo:
The velocity distribution for a vibrated granular material is determined in the dilute limit where the frequency of particle collisions with the vibrating surface is large compared to the frequency of binary collisions. The particle motion is driven by the source of energy due to particle collisions with the vibrating surface, and two dissipation mechanisms-inelastic collisions and air drag-are considered. In the latter case, a general form for the drag force is assumed. First, the distribution function for the vertical velocity for a single particle colliding with a vibrating surface is determined in the limit where the dissipation during a collision due to inelasticity or between successive collisions due to drag is small compared to the energy of a particle. In addition, two types of amplitude functions for the velocity of the surface, symmetric and asymmetric about zero velocity, are considered. In all cases, differential equations for the distribution of velocities at the vibrating surface are obtained using a flux balance condition in velocity space, and these are solved to determine the distribution function. It is found that the distribution function is a Gaussian distribution when the dissipation is due to inelastic collisions and the amplitude function is symmetric, and the mean square velocity scales as [[U-2](s)/(1 - e(2))], where [U-2](s) is the mean square velocity of the vibrating surface and e is the coefficient of restitution. The distribution function is very different from a Gaussian when the dissipation is due to air drag and the amplitude function is symmetric, and the mean square velocity scales as ([U-2](s)g/mu(m))(1/(m+2)) when the acceleration due to the fluid drag is -mu(m)u(y)\u(y)\(m-1), where g is the acceleration due to gravity. For an asymmetric amplitude function, the distribution function at the vibrating surface is found to be sharply peaked around [+/-2[U](s)/(1-e)] when the dissipation is due to inelastic collisions, and around +/-[(m +2)[U](s)g/mu(m)](1/(m+1)) when the dissipation is due to fluid drag, where [U](s) is the mean velocity of the surface. The distribution functions are compared with numerical simulations of a particle colliding with a vibrating surface, and excellent agreement is found with no adjustable parameters. The distribution function for a two-dimensional vibrated granular material that includes the first effect of binary collisions is determined for the system with dissipation due to inelastic collisions and the amplitude function for the velocity of the vibrating surface is symmetric in the limit delta(I)=(2nr)/(1 - e)much less than 1. Here, n is the number of particles per unit width and r is the particle radius. In this Limit, an asymptotic analysis is used about the Limit where there are no binary collisions. It is found that the distribution function has a power-law divergence proportional to \u(x)\((c delta l-1)) in the limit u(x)-->0, where u(x) is the horizontal velocity. The constant c and the moments of the distribution function are evaluated from the conservation equation in velocity space. It is found that the mean square velocity in the horizontal direction scales as O(delta(I)T), and the nontrivial third moments of the velocity distribution scale as O(delta(I)epsilon(I)T(3/2)) where epsilon(I) = (1 - e)(1/2). Here, T = [2[U2](s)/(1 - e)] is the mean square velocity of the particles.
Resumo:
We describe simple one-dimensional models of passive (no energy input, no control), generally dissipative, vertical hopping and one-ball juggling. The central observation is that internal passive system motions can conspire to eliminate collisions in these systems. For hopping, two point masses are connected by a spring and the lower mass has inelastic collisions with the ground. For juggling, a lower point-mass hand is connected by a spring to the ground and an upper point-mass ball is caught with an inelastic collision and then re-thrown into gravitational free flight. The two systems have identical dynamics. Despite inelastic collisions between non-zero masses, these systems have special symmetric energy-conserving periodic motions where the collision is at zero relative velocity. Additionally, these special periodic motions have a non-zero sized, one-sided region of attraction on the higher-energy side. For either very large or very small mass ratios, the one-sided region of attraction is large. These results persist for mildly non-linear springs and non-constant gravity. Although non-collisional damping destroys the periodic motions, small energy injection makes the periodic motions stable, with a two-sided region of attraction. The existence of such special energy conserving solutions for hopping and juggling points to possibly useful strategies for both animals and robots. The lossless motions are demonstrated with a table-top experiment.