970 resultados para Espen, Zeger Bernard van, 1646-1728
Resumo:
door Menachem Man ben Salomo Halevi... uit het Joodsch-Duitsch vertaald door L. Goudsmit ... verrijkt door G. I. Polak
Resumo:
samengesteld da J. S. Da Silva Rosa
Resumo:
Ellis-van Creveld (EvC) syndrome is a human autosomal recessive disorder caused by a mutation in either the EVC or EVC2 gene, and presents with short limbs, polydactyly, and ectodermal and heart defects. The aim of this study was to understand the pathologic basis by which deletions in the EVC2 gene lead to chondrodysplastic dwarfism and to describe the morphologic, immunohistochemical, and molecular hallmarks of EvC syndrome in cattle. Five Grey Alpine calves, with a known mutation in the EVC2 gene, were autopsied. Immunohistochemistry was performed on bone using antibodies to collagen II, collagen X, sonic hedgehog, fibroblast growth factor 2, and Ki67. Reverse transcription polymerase chain reaction was performed to analyze EVC1 and EVC2 gene expression. Autopsy revealed long bones that were severely reduced in length, as well as genital and heart defects. Collagen II was detected in control calves in the resting, proliferative, and hypertrophic zones and in the primary and secondary spongiosa, with a loss of labeling in the resting zone of 2 dwarfs. Collagen X was expressed in hypertrophic zone in the controls but was absent in the EvC cases. In affected calves and controls, sonic hedgehog labeled hypertrophic chondrocytes and primary and secondary spongiosa similarly. FGF2 was expressed in chondrocytes of all growth plate zones in the control calves but was lost in most EvC cases. The Ki67 index was lower in cases compared with controls. EVC and EVC2 transcripts were detected. Our data suggest that EvC syndrome of Grey Alpine cattle is a disorder of chondrocyte differentiation, with accelerated differentiation and premature hypertrophy of chondrocytes, and could be a spontaneous model for the equivalent human disease.
Resumo:
Vorbesitzer: Johann Hieronymus Zum Jungen;
Resumo:
OBJECTIVE The first description of the simplified acute physiology score (SAPS) II dates back to 1993, but little is known about its accuracy in daily practice. Our purpose was to evaluate the accuracy of scoring and the factors that affect it in a nationwide survey. METHODS Twenty clinical scenarios, covering a broad range of illness severities, were randomly assigned to a convenience sample of physicians or nurses in Swiss adult intensive care units (ICUs), who were asked to assess the SAPS II score for a single scenario. These data were compared to a reference that was defined by five experienced researchers. The results were cross-matched with demographic characteristics and data on the training and quality control for the scoring, structural and organisational properties of each participating ICU. RESULTS A total of 345 caregivers from 53 adult ICU providers completed the SAPS II evaluation of one clinical scenario. The mean SAPS II scoring was 42.6 ± 23.4, with a bias of +5.74 (95%CI 2.0-9.5) compared to the reference score. There was no evidence of bias variation according to the case severity, ICU size, linguistic area, profession (physician vs. nurse), experience, initial SAPS II training, or presence of a quality control system. CONCLUSION This nationwide survey revealed substantial variability in the SAPS II scoring results. On average, SAPS II scoring was overestimated by more than 13%, irrespective of the profession or experience of the scorer or of the structural characteristics of the ICUs.
Resumo:
Herein we provide a detailed molecular analysis of the spatial heterogeneity of clinically localized, multifocal prostate cancer to delineate new oncogenes or tumor suppressors. We initially determined the copy number aberration (CNA) profiles of 74 patients with index tumors of Gleason score 7. Of these, 5 patients were subjected to whole-genome sequencing using DNA quantities achievable in diagnostic biopsies, with detailed spatial sampling of 23 distinct tumor regions to assess intraprostatic heterogeneity in focal genomics. Multifocal tumors are highly heterogeneous for single-nucleotide variants (SNVs), CNAs and genomic rearrangements. We identified and validated a new recurrent amplification of MYCL, which is associated with TP53 deletion and unique profiles of DNA damage and transcriptional dysregulation. Moreover, we demonstrate divergent tumor evolution in multifocal cancer and, in some cases, tumors of independent clonal origin. These data represent the first systematic relation of intraprostatic genomic heterogeneity to predicted clinical outcome and inform the development of novel biomarkers that reflect individual prognosis.