983 resultados para Enzymatic Activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gene transfer efficiency of human hematopoietic stem cells is still inadequate for efficient gene therapy of most disorders. To overcome this problem, a selectable retroviral vector system for gene therapy has been developed for gene therapy of Gaucher disease. We constructed a bicistronic retroviral vector containing the human glucocerebrosidase (GC) cDNA and the human small cell surface antigen CD24 (243 bp). Expression of both cDNAs was controlled by the long terminal repeat enhancer/promoter of the Molony murine leukemia virus. The CD24 selectable marker was placed downstream of the GC cDNA and its translation was enhanced by inclusion of the long 5' untranslated region of encephalomyocarditis virus internal ribosomal entry site. Virus-producing GP+envAM12 cells were created by multiple supernatant transductions to create vector producer cells. The vector LGEC has a high titer and can drive expression of GC and the cell surface antigen CD24 simultaneously in transduced NIH 3T3 cells and Gaucher skin fibroblasts. These transduced cells have been successfully separated from untransduced cells by fluorescence-activated cell sorting, based on cell surface expression of CD24. Transduced and sorted NIH 3T3 cells showed higher GC enzyme activity than the unsorted population, demonstrating coordinated expression of both genes. Fibroblasts from Gaucher patients were transduced and sorted for CD24 expression, and GC enzyme activity was measured. The transduced sorted Gaucher fibroblasts had a marked increase in enzyme activity (149%) compared with virgin Gaucher fibroblasts (17% of normal GC enzyme activity). Efficient transduction of CD34+ hematopoietic progenitors (20-40%) was accomplished and fluorescence-activated cell sorted CD24(+)-expressing progenitors generated colonies, all of which (100%) were vector positive. The sorted, CD24-expressing progenitors generated erythroid burst-forming units, colony-forming units (CFU)-granulocyte, CFU-macrophage, CFU-granulocyte/macrophage, and CFU-mix hematopoietic colonies, demonstrating their ability to differentiate into these myeloid lineages in vitro. The transduced, sorted progenitors raised the GC enzyme levels in their progeny cells manyfold compared with untransduced CD34+ progenitors. Collectively, this demonstrates the development of high titer, selectable bicistronic vectors that allow isolation of transduced hematopoietic progenitors and cells that have been metabolically corrected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two water quality monitoring strategies designed to sample hydrophobic organic contaminants have been applied and evaluated across an expected concentration gradient in PAHs in the Moreton region. Semipermeable membrane devices (SPMDs) that sequester contaminants via passive diffusion across a membrane were used to evaluate the concentration of PAHs at four and five sites in spring and summer 2001/2002, respectively. In addition, induction of hepatic cytochrome P4501, EROD activity, in yellowfin bream, Acanthopagrus australis, captured in the vicinity of SPMD sampling sites following deployment in summer was used as a biomarker of exposure to PAHs and related chemicals. SPMDs identified a clear and reproducible gradient in PAH contamination with levels increasing from east to west in Moreton Bay and upstream in the Brisbane River. The highest PAH concentrations expressed as B(a)P-toxicity equivalents (TEQs) were found in urban areas, which were also furthest upstream and experienced the least flushing. Cytochrome P4501 induction in A. australis was similar at all sites. The absence of clear trends in EROD activity may be attributable to factors not measured in this study or variable residency time of A. australis in contaminated areas. It is also possible that fish in the Moreton region are displaying enzymatic adaptation, which has been reported previously for fish subjected to chronic exposure to organic contaminants. These potential interferences complicate interpretation of EROD activity from feral biota. It is, therefore, suggested that future monitoring combine the two methods by applying passive sampler extracts to in vitro EROD assays. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite wide application of cellulose-azure as a substrate for measuring cellulase activity, there is no quantification of hydrolysis rate or enzymatic activities using this substrate. The aim of this study was to quantify the hydrolysis rate in terms of product formation and dye released using cellulose-azure. The amount of dye released was correlated with the production of glucose and the enzyme concentrations. It is shown that the lack of correlation can be due to (1) repression of the release of the azure-dye when azure-dye accumulates, (2) presence of degradable substrates in the cellulase powder which inflate the glucose measurements and (3) the degradation of cellulose which is not linked to the dye in the cellulose-azure. Based on the lack of correlation, it is recommended that cellulose-azure should only be applied in assays when the aim is to compare relative activities of different enzymatic systems. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aims of this work have been to identify an enzymatic reaction system suitable to investigate and develop the high-speed centrifuge as a novel reaction system for performing such reactions. The production of galacto-oligosaccharides by the trans-galactosyl activity of the enzyme β-galactosidase on lactose monohydrate was identified as a model enzymatic system to elucidate the principles of this type of process. Galacto-oligosaccharides have attracted considerable commercial interest as food additives which have been shown to be beneficial to the health of the human gastrointestinal tract. The development of a single unit operation capable of controlling the biosynthesis of galacto-oligosaccharides whilst simultaneously separating the enzyme from the reaction products would reduce downstream processing costs. This thesis shows for the first time that by using a combination of (a) immobilised or insolubilised β-galactosidase , (b) a rate-zonal centrifugation technique, and (c) various applied centrifugal fields, that a high-speed centrifuge could be used to control the formation of galacto-oligosaccharides whilst removing the enzyme from the reaction products. By layering a suspension of insolubilised β-galactosidase on top of a lactose monohydrate density gradient and centrifuging, the applied centrifugal fields generated produced sedimentation of the enzyme particles through the substrate. The higher sedimentation rate of the enzyme compared to those of the reaction products allowed for separation to take place. Complete sedimentation, or pelleting of the enzyme permits the possible recovery and re-use. Insolubilisation of the enzyme allowed it to be sedimented through the substrate gradient using much lower applied centrifugal fields than that required to sediment free soluble enzyme and this allowed for less expensive centrifugation equipment to be used. Using free soluble and insolubilised β-galactosidase stirred-batch reactions were performed to investigate the kinetics of lactose monohydrate hydrolysis and galacto-oligosaccharide formation. Based on these results a preliminary mathematical model based on Michaelis-Menten kinetics was produced. It was found that the enzyme insolubilisation process using a chemical cross-linking agent did not affect the process of galacto-oligosaccharide formation. Centrifugation experiments were performed and it was found that by varying the applied centrifugal fields that the yield of galacto-oligosaccharides could be controlled. The higher the applied centrifugal fields the lower the yield of galacto-oligosaccharides. By increasing the applied centrifugal fields the 'contact time' between the sedimenting enzyme and the substrate was reduced, which produced lower yields. A novel technique involving pulsing the insolubilised enzyme through the substrate gradient was developed and this was found to produce higher yields of galacto-oligosaccharide compared to using a single enzyme loading equivalent to the total combined activity of the pulses. Comparison of the galacto-oligosaccharide yields between stirred-batch and centrifugation reactions showed that the applied centrifugal fields did not adversely affect the transgalactosyl activity of the insolubilised enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes investigations upon pseudopeptides which were conducted to improve our understanding of the fate of synthetic macromolecules in cells and to develop approaches to influence that fate. The low uptake of molecules across the external cellular membrane is the principal barrier against effective delivery of therapeutic products to within the cell structure. In nature, disruption of this membrane by amphiphilic peptides plays a central role in the pathogenesis by bacterial and toxin infections. These amphiphilic peptides contain both hydrophobic and weakly charged hydrophilic amino acid residues and upon activation they become integrated into the lipid bilayers of the extracellular or endosomal membranes. The architectures of the pseudopeptides described here were designed to display similar pH dependent membrane rupturing activity to that of peptides derived from the influenza virus hemagglutinin HA-2. This HA protein promotes fusion of the influenza virus envelope with the cell endosome membrane due to a change in conformation in response to the acidic pH of the endosome lumen (pH 5.0-6.0). The pseudopeptides were obtained by the copolymerisation of L-lysine and L-lysine ethyl-ester with various dicarboxylic acid moieties. In this way a linear polyamide comprising of alternating pendant carboxylic acids and pendant hydrophobic moieties was made. At physiological pH (pH 7.4), electrostatic repulsion of pendant anionic carboxyl groups along the polymer backbone is sufficient to overcome the intramolecular association of the hydrophobic groups resulting in an extended conformation. At low pH (typically pH 4.8) loss of charge results in increased intramolecular hydrophobic association and the polymer chain collapses to a compact conformation, leading to precipitation of the polymer. Consequently, a conformation dependent functional property could be made to respond to small changes in the environmental pH. Pseudopepides were investigated for their cytoxicity towards a well known cell line, namely C26 (colorectal adenocarcinoma) and were shown through the use of a cell viability assay, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) to be well tolerated by C26 cells over a range of concentrations (2-500,μg/ml) at physiological pH (pH 7.4). A modified version of a shorter 30-minute coupled enzymatic assay, the LDH (lactate dehydrogenase) assay was used to evaluate the ability of the pseudopeptides to disrupt the membrane of two different cell lines (COS-1; African green monkey, kidney and A2780; human ovarian carcinoma) at low pH (pH 5.5). The cell membrane disruption property of the pseudopeptides was successfully demonstrated for COS-I and A2780 cell lines at this pH (pH 5.5). A variety of cell lines were chosen owing to limited availability and to compare the cytotoxic action of these pH responsive psudopeptides towards normal and tumorogenic cell lines. To investigate the intracellular delivery of one of the pseudopeptides, poly (L-lysine iso-phthalamide) and its subcellular location, a Cy3 bisamine fluorophore was conjugated into its backbone, at ratios of dye:lysine of 1:20, 1:30, 1:40, 1:60 and 1:80. Native polyacrylacrylamide gel electrophoresis (PAGE) and high voltage paper electrophoresis (HVPE) studies of the polydyes were conducted and provided evidence that that the Cy3 bisamine fluorophore was conjugated into the backbone of the polymer, poly (L-lysine iso-phthalamide). The subcellular fate of the fluorescentlylabelled "polydye" (hereafter PD20) was monitored by laser scanning confocal microscopy (LSCM) in CHO (Chinese hamster ovary) cells cultured in-vitro at various pH values (pH 7.4 and 5.0). LSCM images depicting time-dependent internalisation of PD20 indicated that PD20 traversed the extracellular membrane of CHO cells cultured in-vitro within ten minutes and migrated towards the endosomal regions where the pH is in the region of 5.0 to 6.0. Nuclear localisation of PD20 was demonstrated in a subpopulation of CHO cells. A further study was completed in CHO and HepG2 (hepatocellular carcinoma) cells cultured in-vitro using a lower molecular weight polymer to demonstrate that the molecular weight of "polydye" could be tailored to attain nuclear trafficking in cells. Prospective use of this technology encompasses a method of delivering a payload into a living cell based upon the hypercoiling nature of the pseudopeptides studied in this thesis and has led to a patent application (GB0228525.2; 20(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glioblastoma Multiforme (GBM) is a highly malignant form of brain cancer for which there is no effective cure. The over-expression of a number of genes, including the epidermal growth factor receptor (EGFr), has been implicated as a causative factor of tumourigenesis. Ribozymes are a class of ribonucleic acid that possess enzymatic properties. They can inhibit gene-expression in a highly sequence specific manner by catalysing the trans-cleavage of target RNA. The potential use of synthetic hammerhead ribozymes as novel anti-brain tumour agents was investigated in this study. The successful use of synthetic, exogenously administered ribozymes for such applications will require chemical modifications that improve biological stability and a fundamental understanding of cellular uptake mechanisms. Chimeric 2'-O-methylated hammerhead ribozymes proved to be significantly more stable (>4000-fold) in serum than unmodified RNA ribozymes and exhibited high in vitro catalytic activity. The cellular association of an internally [32P]-labelled 2'-O-methylated chimeric ribozyme in U87-MG human glioma cells was temperature-, energy- and pH-dependent and involved an active process that could be competed with a variety of polyanions. Indications are that the predominant mechanism of uptake is by adsorptive and / or receptor mediated endocytosis. Twenty 2'-O-methylated chimeric ribozymes were designed to cleave various sites along the EGFr mRNA. In vitro, 18 ribozymes exhibited high activity in cleaving a complementary short substrate. Using LipofectAMINETM as a delivery agent, the efficacy of these ribozymes was evaluated in the A431 cell line, which expresses amplified levels of EGFr. Studies revealed that although the ribozymes were taken up by the cells and remained stable over a period of 4 days, no significant reduction in either EGFr expression or cell proliferation was evident. The presence of telomerase, a ribonucleoprotein responsible for telomere elongation, has been strongly associated with tumour progression. The biological activity of a 2'-O-methylated ribozyme targeted against the RNA component of telomerase was determined. The ribozyme exhibited specific dose-dependent inhibition of telomerase activity in U87-MG cell lysates with an IC50 of –4μM. When 4μM ribozyme was delivered to intact U87-MG cells, complexed to LipofectAMINETM, telomerase activity was significantly reduced to 74.5±4.17% of the untreated control. Free ribozyme showed no significant inhibitory effect demonstrating the importance of an appropriate delivery system for optimum delivery of exogenously administered ribozymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gemcitabine (2', 2'-difluoro-2'-deoxycytidine or dFdC) has become a standard chemotherapeutic agent in the treatment of several cellular and solid tumor- related malignancies. Gemcitabine's anti-cancer activity has been attributed to its inhibitory effects on the cell's DNA synthetic machinery resulting in the induction of cell arrest and apoptosis. Despite its broad application, treatment capacity with this drug is limited due to complicated administration schedules stemming from low bioavailability and tumor resistance associated with its rampant intracellular enzymatic inactivation. The aim of this study is to characterize the anti-cancer activity of novel designed and synthesized gemcitabine analogues, that were modified with long alkyl chains at the 4-amino group of the cytosine ring. This study proposes the use of these alternative derivatives of gemcitabine that not only uphold current drug standards for potency, but additionally confer chemical stability against enzymatic inactivation. During screening conducted to identifY prospective gem-analogue candidates, I observed the potent anticancer properties ofthree 4-N modified compounds on MCF-7 breast adenocarcinoma cells. Experiments described here with these compounds referred to as LCO, LCAO, and Gvaldo, evaluate their cytotoxicity on MCF-7 cells at the concentrations of 25flM and 2.5flM, and assess their inhibitory effects on DNA synthesis and cell cycle progression using sulphorhodamine B and bromodeoxyuridine assays as well as flow cytometric analyses, respectively. Among the compounds tested, LCO was shown to be most active inhibitor of DNA synthesis (a=.05; p<.OOl) as reflected as a distinct GO/Gl versus S-phase arrest in the 25flM and 2.5flM treatments, respectively. Together, these experiments provide preliminary evidence for the clinical application of LCO-like gemcitabine derivatives as a novel treatment for breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiotensin-converting enzyme (EC3.4.15. I; ACE), isa membrane-bounddipeptidyl carboxypeptidase that mediates the cleavage of the C-terminal dipeptide His-Leu of the decapeptide angiotensin, generating the most powerful endogenous vaso-constricting angiotensin.
Some ACE inhibitors, such as Captopril, have been used as anti-hypertensive drugs. Moreover in recent years, large quantities of ACE inhibitors have been identijied and isolated from peptides derivedfrom food material such as casein, soy protein, jish protein and so on. Functional food with hypotensive effect has been developed on the basis of these works.
Typicalprocedures for screening hypotensive peptides offood origins are separationof products of peptic and tryptic digestion of proteins followed by inhibitory activitydetermination of each fraction. A method developed by Cushman has been the mostwidely used, in which ACE activity is determined by the amount of hippuric acid
generated as a product of enzymatic reaction of ACE with tripeptide of hippuryl-Lhistidyl-L-leucine. Hippuric acid is determined spectrophotometrically at 228 nm after its isolation from the reaction system by ethylacetate extraction, which not only requires alarge quantity of reagent but also results in large error.
An improved method based on Cushman ’s method is proposed in this paper. In this method, an enzymatic reaction system is based on Cushman’s method, while isolation and determination of hippuric acid is performed by medium perjormance gel chromatography on a Toyopearl HW-40s column. Due to the size exclusion nature of the column with somewhat hydrophobic properties, complete separation of four existing fractions in the reaction system is obtained within a smallfraction of the time necessary in Cushman’s method, with ideal reproducibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a one-step bio-refinery process for shrimp composites by-products. Its originality lies in a simple rapid (6 h) biotechnological cuticle fragmentation process that recovers all major compounds (chitins, peptides and minerals in particular calcium). The process consists of a controlled exogenous enzymatic proteolysis in a food-grade acidic medium allowing chitin purification (solid phase), and recovery of peptides and minerals (liquid phase). At a pH of between 3.5 and 4, protease activity is effective, and peptides are preserved. Solid phase demineralization kinetics were followed for phosphoric, hydrochloric, acetic, formic and citric acids with pKa ranging from 2.1 to 4.76. Formic acid met the initial aim of (i) 99 % of demineralization yield and (ii) 95 % deproteinization yield at a pH close to 3.5 and a molar ratio of 1.5. The proposed one-step process is proven to be efficient. To formalize the necessary elements for the future optimization of the process, two models to predict shell demineralization kinetics were studied, one based on simplified physical considerations and a second empirical one. The first model did not accurately describe the kinetics for times exceeding 30 minutes, the empirical one performed adequately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiogenesis is a process by which new blood vessels are formed from the pre-existing vasculature, and it is a key process that leads to tumour development. Some studies have recognized phenolic compounds as chemopreventive agents; flavonoids, in particular, seem to suppress the growth of tumor cells modifying the cell cycle. Herein, the antiangiogenic activity of Roman chamomile (Chamaemelum nobile L.) extracts (methanolic extract and infusion) and the main phenolic compounds present (apigenin, apigenin-7-O-glucoside, caffeic acid, chlorogenic acid, luteolin, and luteolin-7-O-glucoside) was evaluated through enzymatic assays using the tyrosine kinase intracellular domain of the Vascular Endothelium Growth Factor Receptor-2 (VEGFR-2), which is a transmembrane receptor expressed fundamentally in endothelial cells involved in angiogenesis, and molecular modelling studies. The methanolic extract showed a lower IC50 value (concentration that provided 50% of VEGFR-2 inhibition) than the infusion, 269 and 301 μg mL(-1), respectively. Regarding phenolic compounds, luteolin and apigenin showed the highest capacity to inhibit the phosphorylation of VEGFR-2, leading us to believe that these compounds are involved in the activity revealed by the methanolic extract.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secretory phospholipases A(2) (sPLA(2)) exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2), an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA2 from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA(2) tested. PrTX-III (B. pirajai venom) was inhibited at about 58.7%, Cdt F15 (C. d. terrificus venom) at 78.8%, Apis (from bee venom) at 87.7%, and Naja (N. naja venom) at 88.1%. Edema induced by exogenous sPLA(2) administration performed in mice paws showed significant inhibition by Har2 at the initial step. In addition, Har2 also inhibited the myotoxic activity of these sPLA(2)s. In order to understand how Har2 interacts with these enzymes, docking calculations were made, indicating that the residues His48 and Asp49 in the active site of these enzymes interacted powerfully with Har2 through hydrogen bonds. These data pointed to a possible anti-inflammatory activity of Har2 through sPLA(2) inhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologias, Universidade do Algarve, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wheat amylase-trypsin inhibitors (ATIs) are a family of wheat proteins, which play an important role in plant defence against pest attacks. ATIs are also of great interest for their impact on human health and recently ATIs have been identified as major stimulators of innate immune cells. In this study, ten selected wheat samples with different ploidy level and year of release were used for the agronomic trial, for in vitro enzymatic assays and for ATIs gene sequencing. Wheat samples were grown under organic farming management during three consecutive cropping years at two growing areas (Italy and USA). The PCA analysis performed on the deduced amino acid sequences of four representative ATIs genes (WMAI, WDAI, WTAI-CM3, CMx) evidenced that the ten wheat varieties can be differentiated on the basis of their ploidy level, but not with respect to ancient or recently developed wheat genotypes. The results from in vitro alpha-amylase and trypsin inhibitory activities showed high variability among the ten wheat genotypes and the contribution of the genotype and the cropping year was significant for both inhibitory activities. The hexaploid wheat genotypes showed the highest inhibitory activities. Einkorn showed a very low or even absent alpha-amylase inhibitory activity and the highest trypsin inhibitory activity. It was not possible to differentiate ancient and recently developed wheat genotypes on the basis of their ATIs activity. The weather conditions differently affected the two inhibitory activities. In both cultivation areas, higher precipitation and lower high mean temperatures correlated with lower alpha-amylase inhibitory activities, while there were different correlations considering trypsin inhibitory activity for the two growing areas. The protein content negatively correlated with both inhibitory activities in USA and Italy. This information can be important in the understanding of plant defence mechanisms in relation to the effect of both genotype and abiotic and biotic stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the antimicrobial efficacy of Clearfil SE Protect (CP) and Clearfil SE Bond (CB) after curing and rinsed against five individual oral microorganisms as well as a mixture of bacterial culture prepared from the selected test organisms. Bacterial suspensions were prepared from single species of Streptococcus mutans, Streptococcus sobrinus, Streptococcus gordonii, Actinomyces viscosus and Lactobacillus lactis, as well as mixed bacterial suspensions from these organisms. Dentin bonding system discs (6 mm×2 mm) were prepared, cured, washed and placed on the bacterial suspension of single species or multispecies bacteria for 15, 30 and 60 min. MTT, Live/Dead bacterial viability (antibacterial effect), and XTT (metabolic activity) assays were used to test the two dentin system's antibacterial effect. All assays were done in triplicates and each experiment repeated at least three times. Data were submitted to ANOVA and Scheffe's f-test (5%). Greater than 40% bacteria killing was seen within 15 min, and the killing progressed with increasing time of incubation with CP discs. However, a longer (60 min) period of incubation was required by CP to achieve similar antimicrobial effect against mixed bacterial suspension. CB had no significant effect on the viability or metabolic activity of the test microorganisms when compared to the control bacterial culture. CP was significantly effective in reducing the viability and metabolic activity of the test organisms. The results demonstrated the antimicrobial efficacy of CP both on single and multispecies bacterial culture. CP may be beneficial in reducing bacterial infections in cavity preparations in clinical dentistry.