968 resultados para Environmental application
Resumo:
The development of eutrophication in river systems is poorly understood given the complex relationship between fixed plants, algae, hydrodynamics, water chemistry and solar radiation. However there is a pressing need to understand the relationship between the ecological status of rivers and the controlling environmental factors to help the reasoned implementation of the Water Framework Directive and Catchment Sensitive Farming in the UK. This research aims to create a dynamic, process-based, mathematical in-stream model to simulate the growth and competition of different vegetation types (macrophytes, phytoplankton and benthic algae) in rivers. The model, applied to the River Frome (Dorset, UK), captured well the seasonality of simulated vegetation types (suspended algae, macrophytes, epiphytes, sediment biofilm). Macrophyte results showed that local knowledge is important for explaining unusual changes in biomass. Fixed algae simulations indicated the need for the more detailed representation of various herbivorous grazer groups, however this would increase the model complexity, the number of model parameters and the required observation data to better define the model. The model results also highlighted that simulating only phytoplankton is insufficient in river systems, because the majority of the suspended algae have benthic origin in short retention time rivers. Therefore, there is a need for modelling tools that link the benthic and free-floating habitats.
Resumo:
A generic model of Exergy Assessment is proposed for the Environmental Impact of the Building Lifecycle, with a special focus on the natural environment. Three environmental impacts: energy consumption, resource consumption and pollutant discharge have been analyzed with reference to energy-embodied exergy, resource chemical exergy and abatement exergy, respectively. The generic model of Exergy Assessment of the Environmental Impact of the Building Lifecycle thus formulated contains two sub-models, one from the aspect of building energy utilization and the other from building materials use. Combined with theories by ecologists such as Odum, the paper evaluates a building's environmental sustainability through its exergy footprint and environmental impacts. A case study from Chongqing, China illustrates the application of this method. From the case study, it was found that energy consumption constitutes 70–80% of the total environmental impact during a 50-year building lifecycle, in which the operation phase accounts for 80% of the total environmental impact, the building material production phase 15% and 5% for the other phases.
Resumo:
Agri-environment schemes (AESs) have been implemented across EU member states in an attempt to reconcile agricultural production methods with protection of the environment and maintenance of the countryside. To determine the extent to which such policy objectives are being fulfilled, participating countries are obliged to monitor and evaluate the environmental, agricultural and socio-economic impacts of their AESs. However, few evaluations measure precise environmental outcomes and critically, there are no agreed methodologies to evaluate the benefits of particular agri-environmental measures, or to track the environmental consequences of changing agricultural practices. In response to these issues, the Agri-Environmental Footprint project developed a common methodology for assessing the environmental impact of European AES. The Agri-Environmental Footprint Index (AFI) is a farm-level, adaptable methodology that aggregates measurements of agri-environmental indicators based on Multi-Criteria Analysis (MCA) techniques. The method was developed specifically to allow assessment of differences in the environmental performance of farms according to participation in agri-environment schemes. The AFI methodology is constructed so that high values represent good environmental performance. This paper explores the use of the AFI methodology in combination with Farm Business Survey data collected in England for the Farm Accountancy Data Network (FADN), to test whether its use could be extended for the routine surveillance of environmental performance of farming systems using established data sources. Overall, the aim was to measure the environmental impact of three different types of agriculture (arable, lowland livestock and upland livestock) in England and to identify differences in AFI due to participation in agri-environment schemes. However, because farm size, farmer age, level of education and region are also likely to influence the environmental performance of a holding, these factors were also considered. Application of the methodology revealed that only arable holdings participating in agri-environment schemes had a greater environmental performance, although responses differed between regions. Of the other explanatory variables explored, the key factors determining the environmental performance for lowland livestock holdings were farm size, farmer age and level of education. In contrast, the AFI value of upland livestock holdings differed only between regions. The paper demonstrates that the AFI methodology can be used readily with English FADN data and therefore has the potential to be applied more widely to similar data sources routinely collected across the EU-27 in a standardised manner.
Resumo:
The present paper investigates pesticide application types adopted by smallholder potato producers in the Department of Boyacá , Colombia. In this region, environmental, health and adverse economic effects due to pesticide mis- or over-use respectively have been observed. Firstly, pesticide application types were identified based on input-effectiveness. Secondly, their determinants of adoption were investigated. Finally suggestions were given to develop intervention options for transition towards a more sustainable pesticide use. Three application types were identified for fungicide and insecticide. The types differed in terms of input (intensity of pesticide application), effect (damage control), frequency of application, average quantity applied per application, chemical class, and productivity. Then, the determinants of different pesticide application types were investigated with a multinomial logistic regression approach and applying the integrative agent centred (IAC) framework. The area of the plot, attendance at training sessions and educational and income levels were among the most relevant determinants. The analysis suggested that better pesticide use could be fostered to reduce pesticide-related risks in the region. Intervention options were outlined, which may help in targeting this issue. They aim not only at educating farmers, but to change their social and institutional context, by involving other agents of the agricultural system (i.e. pesticide producers), facilitating new institutional settings (i.e. cooperatives) and targeting social dynamics (i.e. conformity to social norms).
Resistance as a factor in environmental exposure of anticoagulant rodenticides: a modelling approach
Resumo:
Anticoagulant rodenticide (AR) resistance in Norway rat populations has been a problem for fifty years, however its impact on non-target species, particularly predatory and scavenging animals has received little attention. Field trials were conducted on farms in Germany and England where resistance to anticoagulant rodenticides had been confirmed. Resistance is conferred by different mutations of the VKORC1 gene in each of these regions: tyrosine139cysteine in Germany and leucine120glutamine in England. A modelling approach was used to study the transference of the anticoagulants into the environment during treatments for Norway rat control. Baiting with brodifacoum resulted in lower levels of AR entering the food chain via the rats and lower numbers of live rats carrying residues during and after the trials due to its lower application rate and efficacy against resistant rats. Bromadiolone and difenacoum resulted in markedly higher levels of AR uptake into the rat population and larger numbers of live rats carrying residues during the trials and for long periods after the baiting period. Neither bromadiolone nor difenacoum provided full control on any of the treated farms. In resistant areas where ineffective compounds are used there is the potential for higher levels of AR exposure to non-target animals, particularly predators of rats and scavengers of rat carcasses. Thus, resistance influences the total amount of AR available to non-targets and should be considered when dealing with rat infestations, as resistance-breakers may present a lower risk to wildlife.
Resumo:
The built environment in China is required to achieve a 50% reduction in carbon emissions by 2020 against the 1980 design standard. A particular challenge is how to maintain acceptable comfort conditions through the hot humid summers and cold desiccating winters of its continental climate regions. Fully air-conditioned sealed envelopes, often fully glazed, are becoming increasingly common in these regions. Remedial strategies involve technical refinements to the air-handling equipment and a contribution from renewable energy sources in an attempt to achieve the prescribed net reduction in energy use. However an alternative hybrid environmental design strategy is developed in this research project. It exploits observed temperate periods of weeks, days, even hours in duration to free-run an office and exhibition building configured to promote natural stack ventilation when ambient conditions permit and mechanical ventilation when conditions require it, the two modes delivered through the same physical infrastructure. The proposal is modelled in proprietary software and the methodology adopted is described. The challenge is compounded by its first practical application to an existing reinforced concrete frame originally designed to receive a highly glazed envelope. This original scheme is reviewed in comparison. Furthermore the practical delivery of the proposal value engineered out a proportion of the ventilation stacks. The likely consequence of this for the environmental performance of the building is investigated through a sensitivity study.
Resumo:
In this paper, the global market potential of solar thermal, photovoltaic (PV) and combined photovoltaic/thermal (PV/T) technologies in current time and near future was discussed. The concept of the PV/T and the theory behind the PV/T operation were briefly introduced, and standards for evaluating technical, economic and environmental performance of the PV/T systems were addressed. A comprehensive literature review into R&D works and practical application of the PV/T technology was illustrated and the review results were critically analysed in terms of PV/T type and research methodology used. The major features, current status, research focuses and existing difficulties/barriers related to the various types of PV/T were identified. The research methods, including theoretical analyses and computer simulation, experimental and combined experimental/theoretical investigation, demonstration and feasibility study, as well as economic and environmental analyses, applied into the PV/T technology were individually discussed, and the achievement and problems remaining in each research method category were described. Finally, opportunities for further work to carry on PV/T study were identified. The review research indicated that air/water-based PV/T systems are the commonly used technologies but their thermal removal effectiveness is lower. Refrigerant/heat-pipe-based PV/Ts, although still in research/laboratory stage, could achieve much higher solar conversion efficiencies over the air/water-based systems. However, these systems were found a few technical challenges in practice which require further resolutions. The review research suggested that further works could be undertaken to (1) develop new feasible, economic and energy efficient PV/T systems; (2) optimise the structural/geometrical configurations of the existing PV/T systems; (3) study long term dynamic performance of the PV/T systems; (4) demonstrate the PV/T systems in real buildings and conduct the feasibility study; and (5) carry on advanced economic and environmental analyses. This review research helps finding the questions remaining in PV/T technology, identify new research topics/directions to further improve the performance of the PV/T, remove the barriers in PV/T practical application, establish the standards/regulations related to PV/T design and installation, and promote its market penetration throughout the world.
Resumo:
The general focus of this paper is the regional estimation of marginal benefits of targeted water pollution abatement to instream uses. Benefit estimates are derived from actual consumer choices of recreational fishing activities and the implied expenditures for various levels of water quality. The methodology is applied to measuring the benefits accruing to recreational anglers in Indiana from the abatement of pollutants that are by-products of agricultural crop production.
Resumo:
In Part I of this study it was shown that moving from a moisture-convergent- to a relative-humidity-dependent organized entrainment rate in the formulation for deep convection was responsible for significant advances in the simulation of the Madden – Julian Oscillation (MJO) in the ECMWF model. However, the application of traditional MJO diagnostics were not adequate to understand why changing the control on convection had such a pronounced impact on the representation of the MJO. In this study a set of process-based diagnostics are applied to the hindcast experiments described in Part I to identify the physical mechanisms responsible for the advances in MJO simulation. Increasing the sensitivity of the deep convection scheme to environmental moisture is shown to modify the relationship between precipitation and moisture in the model. Through dry-air entrainment, convective plumes ascending in low-humidity environments terminate lower in the atmosphere. As a result, there is an increase in the occurrence of cumulus congestus, which acts to moisten the mid troposphere. Due to the modified precipitation – moisture relationship more moisture is able to build up, which effectively preconditions the tropical atmosphere for the t ransition t o d eep convection. R esults from this study suggest that a tropospheric moisture control on convection is key to simulating the interaction between the convective heating and the large-scale wave forcing associated with the MJO.
Resumo:
The application of the Water Framework Directive (WFD) in the European Union (EU) targets certain threshold levels for the concentration of various nutrients, nitrogen and phosphorous being the most important. In the EU, agri-environmental measures constitute a significant component of Pillar 2—Rural Development Policies in both financial and regulatory terms. Environmental measures also are linked to Pillar 1 payments through cross-compliance and the greening proposals. This paper drawing from work carried out in the REFRESH FP7 project aims to show how an INtegrated CAtchment model of plant/soil system dynamics and instream biogeochemical and hydrological dynamics can be used to assess the cost-effectiveness of agri-environmental measures in relation to nutrient concentration targets set by the WFD, especially in the presence of important habitats. We present the procedures (methodological steps, challenges and problems) for assessing the cost-effectiveness of agri-environmental measures at the baseline situation, and climate and land use change scenarios. Furthermore, we present results of an application of this methodology to the Louros watershed in Greece and discuss the likely uses and future extensions of the modelling approach. Finally, we attempt to reveal the importance of this methodology for designing and incorporating alternative environmental practices in Pillar 1 and 2 measures.
Resumo:
Earthworms are important organisms in soil communities and so are used as model organisms in environmental risk assessments of chemicals. However current risk assessments of soil invertebrates are based on short-term laboratory studies, of limited ecological relevance, supplemented if necessary by site-specific field trials, which sometimes are challenging to apply across the whole agricultural landscape. Here, we investigate whether population responses to environmental stressors and pesticide exposure can be accurately predicted by combining energy budget and agent-based models (ABMs), based on knowledge of how individuals respond to their local circumstances. A simple energy budget model was implemented within each earthworm Eisenia fetida in the ABM, based on a priori parameter estimates. From broadly accepted physiological principles, simple algorithms specify how energy acquisition and expenditure drive life cycle processes. Each individual allocates energy between maintenance, growth and/or reproduction under varying conditions of food density, soil temperature and soil moisture. When simulating published experiments, good model fits were obtained to experimental data on individual growth, reproduction and starvation. Using the energy budget model as a platform we developed methods to identify which of the physiological parameters in the energy budget model (rates of ingestion, maintenance, growth or reproduction) are primarily affected by pesticide applications, producing four hypotheses about how toxicity acts. We tested these hypotheses by comparing model outputs with published toxicity data on the effects of copper oxychloride and chlorpyrifos on E. fetida. Both growth and reproduction were directly affected in experiments in which sufficient food was provided, whilst maintenance was targeted under food limitation. Although we only incorporate toxic effects at the individual level we show how ABMs can readily extrapolate to larger scales by providing good model fits to field population data. The ability of the presented model to fit the available field and laboratory data for E. fetida demonstrates the promise of the agent-based approach in ecology, by showing how biological knowledge can be used to make ecological inferences. Further work is required to extend the approach to populations of more ecologically relevant species studied at the field scale. Such a model could help extrapolate from laboratory to field conditions and from one set of field conditions to another or from species to species.
Resumo:
As the fidelity of virtual environments (VE) continues to increase, the possibility of using them as training platforms is becoming increasingly realistic for a variety of application domains, including military and emergency personnel training. In the past, there was much debate on whether the acquisition and subsequent transfer of spatial knowledge from VEs to the real world is possible, or whether the differences in medium during training would essentially be an obstacle to truly learning geometric space. In this paper, the authors present various cognitive and environmental factors that not only contribute to this process, but also interact with each other to a certain degree, leading to a variable exposure time requirement in order for the process of spatial knowledge acquisition (SKA) to occur. The cognitive factors that the authors discuss include a variety of individual user differences such as: knowledge and experience; cognitive gender differences; aptitude and spatial orientation skill; and finally, cognitive styles. Environmental factors discussed include: Size, Spatial layout complexity and landmark distribution. It may seem obvious that since every individual's brain is unique - not only through experience, but also through genetic predisposition that a one size fits all approach to training would be illogical. Furthermore, considering that various cognitive differences may further emerge when a certain stimulus is present (e.g. complex environmental space), it would make even more sense to understand how these factors can impact spatial memory, and to try to adapt the training session by providing visual/auditory cues as well as by changing the exposure time requirements for each individual. The impact of this research domain is important to VE training in general, however within service and military domains, guaranteeing appropriate spatial training is critical in order to ensure that disorientation does not occur in a life or death scenario.
Resumo:
This chapter considers the possible use in armed conflict of low-yield (also known as tactical) nuclear weapons. The Legality of the Threat or Use of Nuclear Weapons Advisory Opinion maintained that it is a cardinal principle that a State must never make civilians an object of attack and must consequently never use weapons that are incapable of distinguishing between civilian and military targets. As international humanitarian law applies equally to any use of nuclear weapons, it is argued that there is no use of nuclear weapons that could spare civilian casualties particularly if you view the long-term health and environmental effects of the use of such weaponry.
Resumo:
The Sustainable Value approach integrates the efficiency with regard to environmental, social and economic resources into a monetary indicator. It gained significant popularity as evidenced by diverse applications at the corporate level. However, its introduction as a measure adhering to the strong sustainability paradigm sparked an ardent debate. This study explores its validity as a macroeconomic strong sustainability measure by applying the Sustainable Value approach to the EU-15 countries. Concretely, we assessed environmental, social and economic resources in combination with the GDP for all EU-15 countries from 1995 to 2006 for three benchmark alternatives. The results show that several countries manage to adequately delink resource use from GDP growth. Furthermore, the remarkable difference in outcome between the national and EU-15 benchmark indicates a possible inefficiency of the current allocation of national resource ceilings imposed by the European institutions. Additionally, by using an effects model we argue that the service degree of the economy and governmental expenditures on social protection and research and development are important determinants of overall resource efficiency. Finally, we sketch out three necessary conditions to link the Sustainable Value approach to the strong sustainability paradigm.