959 resultados para Engineers.
Resumo:
This article provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process. We then present a taxonomy of visual servo control systems. The two major classes of systems, position-based and image-based systems, are then discussed in detail. Since any visual servo system must be capable of tracking image features in a sequence of images, we also include an overview of feature-based and correlation-based methods for tracking. We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control.
Resumo:
In this study, magnetohydrodynamic natural convection boundary layer flow of an electrically conducting and viscous incompressible fluid along a heated vertical flat plate with uniform heat and mass flux in the presence of strong cross magnetic field has been investigated. For smooth integrations the boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation as well as the free variable formulation. The nonsimilar parabolic partial differential equations are integrated numerically for Pr ≪1 that is appropriate for liquid metals against the local Hartmann parameter ξ . Further, asymptotic solutions are obtained near the leading edge using regular perturbation method for smaller values of ξ . Solutions for values of ξ ≫ 1 are also obtained by employing the matched asymptotic technique. The results obtained for small, large and all ξ regimes are examined in terms of shear stress, τw, rate of heat transfer, qw, and rate of mass transfer, mw, for important physical parameter. Attention has been given to the influence of Schmidt number, Sc, buoyancy ratio parameter, N and local Hartmann parameter, ξ on velocity, temperature and concentration distributions and noted that velocity and temperature of the fluid achieve their asymptotic profiles for Sc ≥ 10:0.
Resumo:
Human personality is an important component of psychological factors affecting pedestrian crossing. This paper reports a questionnaire survey on the effects of pedestrian personalities (including neuroticism, extraversion, openness, agreeableness and conscientiousness) on pedestrian violation in China. 675 feedbacks were obtained, of which 535 samples were valid for analysis. The results of the hierarchical regression analysis showed that educational level had significant effect on violation; agreeableness had significant effect on violation, conditional compliance and unconditional compliance; consciousness had significant effect on violation and conditional compliance; extraversion had significant effect on unconditional compliance; neuroticism had significant effect on violation; educational level had significant effect on violation. The results implied that psychological measures played a very important role in pedestrian safety.
Resumo:
This paper reports an observation investigation of pedestrian crossing behaviors conducted at signalized crosswalks in urban areas in Singapore and Beijing on typical workdays. Each crosswalk was observed 3 times in different periods, i.e. normal hours, lunch hours, and rush hours. A total of 103,956 pedestrians were observed. The results showed that lane type, lane number, intersection type, and culture had significant effect on illegal pedestrian crossing in both cities; observation period had no significant effect on pedestrian violation in both cities; the violation rate in Singapore was lower than that in Beijing. However, observers reported that illegal crossing of vulnerable pedestrians, e.g. pregnant, the lame, old men and women, was more obvious in Singapore than that in Beijing. Evidence proved the hypothesis that the violations were related to pedestrians’ cognition of the definition of safety.
Resumo:
The ability to detect unusual events in surviellance footage as they happen is a highly desireable feature for a surveillance system. However, this problem remains challenging in crowded scenes due to occlusions and the clustering of people. In this paper, we propose using the Distributed Behavior Model (DBM), which has been widely used in computer graphics, for video event detection. Our approach does not rely on object tracking, and is robust to camera movements. We use sparse coding for classification, and test our approach on various datasets. Our proposed approach outperforms a state-of-the-art work which uses the social force model and Latent Dirichlet Allocation.
Resumo:
This paper aims to develop an implicit meshless collocation technique based on the moving least squares approximation for numerical simulation of the anomalous subdiffusion equation(ASDE). The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach related to the time discretization are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling of ASDEs.
Resumo:
The construction of a Lunar Base is seen as achievable. The paper provides a useful summary of challenges facing pioneers of lunar base construction. It highlights important aspects of the location and use of the facility, the local environment, the human physiological adaptation process, and a principal concern for the construction industry—construction materials and methods required to erect the facility. Specific emphasis is placed on the latter two major issues. The authors believe that a lunar base will be built, operated and maintained by humans. It may be the next generation that carry out these dreams, but it is research of the type reported in this paper that will make these dreams a reality.
Resumo:
Human activity-induced vibrations in slender structural sys tems become apparent in many different excitation modes and consequent action effects that cause discomfort to occupants, crowd panic and damage to public infrastructure. Resulting loss of public confidence in safety of structures, economic losses, cost of retrofit and repairs can be significant. Advanced computational and visualisation techniques enable engineers and architects to evolve bold and innovative structural forms, very often without precedence. New composite and hybrid materials that are making their presence in structural systems lack historical evidence of satisfactory performance over anticipated design life. These structural systems are susceptible to multi-modal and coupled excitation that are very complex and have inadequate design guidance in the present codes and good practice guides. Many incidents of amplified resonant response have been reported in buildings, footbridges, stadia a nd other crowded structures with adverse consequences. As a result, attenuation of human-induced vibration of innovative and slender structural systems very ofte n requires special studies during the design process. Dynamic activities possess variable characteristics and thereby induce complex responses in structures that are sensitive to parametric variations. Rigorous analytical techniques are available for investigation of such complex actions and responses to produce acceptable performance in structural systems. This paper presents an overview and a critique of existing code provisions for human-induced vibration followed by studies on the performance of three contrasting structural systems that exhibit complex vibration. The dynamic responses of these systems under human-induced vibrations have been carried out using experimentally validated computer simulation techniques. The outcomes of these studies will have engineering applications for safe and sustainable structures and a basis for developing design guidance.
In the pursuit of effective affective computing : the relationship between features and registration
Resumo:
For facial expression recognition systems to be applicable in the real world, they need to be able to detect and track a previously unseen person's face and its facial movements accurately in realistic environments. A highly plausible solution involves performing a "dense" form of alignment, where 60-70 fiducial facial points are tracked with high accuracy. The problem is that, in practice, this type of dense alignment had so far been impossible to achieve in a generic sense, mainly due to poor reliability and robustness. Instead, many expression detection methods have opted for a "coarse" form of face alignment, followed by an application of a biologically inspired appearance descriptor such as the histogram of oriented gradients or Gabor magnitudes. Encouragingly, recent advances to a number of dense alignment algorithms have demonstrated both high reliability and accuracy for unseen subjects [e.g., constrained local models (CLMs)]. This begs the question: Aside from countering against illumination variation, what do these appearance descriptors do that standard pixel representations do not? In this paper, we show that, when close to perfect alignment is obtained, there is no real benefit in employing these different appearance-based representations (under consistent illumination conditions). In fact, when misalignment does occur, we show that these appearance descriptors do work well by encoding robustness to alignment error. For this work, we compared two popular methods for dense alignment-subject-dependent active appearance models versus subject-independent CLMs-on the task of action-unit detection. These comparisons were conducted through a battery of experiments across various publicly available data sets (i.e., CK+, Pain, M3, and GEMEP-FERA). We also report our performance in the recent 2011 Facial Expression Recognition and Analysis Challenge for the subject-independent task.
Resumo:
The design-build (DB) system is a popular and effective delivery method of construction projects worldwide. After owners decide to procure their projects through the DB system, they may wish to determine the optimal proportion of design to be provided in the DB request for proposals (RFPs), which serve as solicitations for design-builders and describe the scope of work. However, this presents difficulties to DB owners and there is little, if any, systematic research in this area. This paper reports on an empirical study in the USA entailing both an online questionnaire survey and Delphi survey to identify and evaluate the factors influencing owners’ decisions in determining the proportion of design to include in DB RFPs. Eleven factors are identified, i.e. (1) clarity of project scope; (2) applicability of performance specifications; (3) desire for design innovation; (4) site constraints; (5) availability of competent design-builders; (6) project control requirements; (7) user group involvement level; (8) third party requirements; (9) owner experience with DB; (10) project complexity; and (11) schedule constraints. A statistically significant agreement on the eleven factors was also obtained from the (mainly non-owner) Delphi experts. Although some of the experts hold different opinions on how these factors affect the proportion of design, these findings furnish various stakeholders with a better understanding of the delivery process of DB projects and the appropriate provision of project information in DB RFPs. As the result is mainly industry opinion concerning the optimal proportion of design, in addition and for completeness, future studies should be conducted to obtain a big picture of the optimal proportion of design by means of seeking owners’ inputs.
Resumo:
Flexibility is a key driver of any successful design, specifically in highly unpredictable environment such as airport terminal. Ever growing aviation industry requires airport terminals to be planned and constructed in such a way that will allow flexibility for future design, alteration and redevelopment. The concept of flexibility in terminal design is a relatively new initiative, where existing rules or guidelines are not adequate to assist designers. A shift towards flexible design concept would allow terminal buildings to be designed to accommodate future changes and to make passengers’ journey as simple, timely and hassle free as possible. Currently available research indicates that a theoretical framework on flexible design approach for airport terminals would facilitate the future design process. The generic principles of flexibility are investigated in the current research to incorporate flexible design approaches within the process of an airport terminal design. A conceptual framework is proposed herein, which is expected to ascertain flexibility to current passenger terminal facilities within their corresponding locations as well as in future design and expansion.
Resumo:
Even though titanium dioxide photocatalysis has been promoted as a leading green technology for water purification, many issues have hindered its application on a large commercial scale. For the materials scientist the main issues have centred the synthesis of more efficient materials and the investigation of degradation mechanisms; whereas for the engineers the main issues have been the development of appropriate models and the evaluation of intrinsic kinetics parameters that allow the scale up or re-design of efficient large-scale photocatalytic reactors. In order to obtain intrinsic kinetics parameters the reaction must be analysed and modelled considering the influence of the radiation field, pollutant concentrations and fluid dynamics. In this way, the obtained kinetic parameters are independent of the reactor size and configuration and can be subsequently used for scale-up purposes or for the development of entirely new reactor designs. This work investigates the intrinsic kinetics of phenol degradation over titania film due to the practicality of a fixed film configuration over a slurry. A flat plate reactor was designed in order to be able to control reaction parameters that include the UV irradiance, flow rates, pollutant concentration and temperature. Particular attention was paid to the investigation of the radiation field over the reactive surface and to the issue of mass transfer limited reactions. The ability of different emission models to describe the radiation field was investigated and compared to actinometric measurements. The RAD-LSI model was found to give the best predictions over the conditions tested. Mass transfer issues often limit fixed film reactors. The influence of this phenomenon was investigated with specifically planned sets of benzoic acid experiments and with the adoption of the stagnant film model. The phenol mass transfer coefficient in the system was calculated to be km,phenol=8.5815x10-7Re0.65(ms-1). The data obtained from a wide range of experimental conditions, together with an appropriate model of the system, has enabled determination of intrinsic kinetic parameters. The experiments were performed in four different irradiation levels (70.7, 57.9, 37.1 and 20.4 W m-2) and combined with three different initial phenol concentrations (20, 40 and 80 ppm) to give a wide range of final pollutant conversions (from 22% to 85%). The simple model adopted was able to fit the wide range of conditions with only four kinetic parameters; two reaction rate constants (one for phenol and one for the family of intermediates) and their corresponding adsorption constants. The intrinsic kinetic parameters values were defined as kph = 0.5226 mmol m-1 s-1 W-1, kI = 0.120 mmol m-1 s-1 W-1, Kph = 8.5 x 10-4 m3 mmol-1 and KI = 2.2 x 10-3 m3 mmol-1. The flat plate reactor allowed the investigation of the reaction under two different light configurations; liquid and substrate side illumination. The latter of particular interest for real world applications where light absorption due to turbidity and pollutants contained in the water stream to be treated could represent a significant issue. The two light configurations allowed the investigation of the effects of film thickness and the determination of the catalyst optimal thickness. The experimental investigation confirmed the predictions of a porous medium model developed to investigate the influence of diffusion, advection and photocatalytic phenomena inside the porous titania film, with the optimal thickness value individuated at 5 ìm. The model used the intrinsic kinetic parameters obtained from the flat plate reactor to predict the influence of thickness and transport phenomena on the final observed phenol conversion without using any correction factor; the excellent match between predictions and experimental results provided further proof of the quality of the parameters obtained with the proposed method.
Resumo:
A physiological control system was developed for a rotary left ventricular assist device (LVAD) in which the target pump flow rate (LVADQ) was set as a function of left atrial pressure (LAP), mimicking the Frank-Starling mechanism. The control strategy was implemented using linear PID control and was evaluated in a pulsatile mock circulation loop using a prototyped centrifugal pump by varying pulmonary vascular resistance to alter venous return. The control strategy automatically varied pump speed (2460 to 1740 to 2700 RPM) in response to a decrease and subsequent increase in venous return. In contrast, a fixed-speed pump caused a simulated ventricular suction event during low venous return and higher ventricular volumes during high venous return. The preload sensitivity was increased from 0.011 L/min/mmHg in fixed speed mode to 0.47L/min/mmHg, a value similar to that of the native healthy heart. The sensitivity varied automatically to maintain the LAP and LVADQ within a predefined zone. This control strategy requires the implantation of a pressure sensor in the left atrium and a flow sensor around the outflow cannula of the LVAD. However, appropriate pressure sensor technology is not yet commercially available and so an alternative measure of preload such as pulsatility of pump signals should be investigated.
Resumo:
IT-supported field data management benefits on-site construction management by improving accessibility to the information and promoting efficient communication between project team members. However, most of on-site safety inspections still heavily rely on subjective judgment and manual reporting processes and thus observers’ experiences often determine the quality of risk identification and control. This study aims to develop a methodology to efficiently retrieve safety-related information so that the safety inspectors can easily access to the relevant site safety information for safer decision making. The proposed methodology consists of three stages: (1) development of a comprehensive safety database which contains information of risk factors, accident types, impact of accidents and safety regulations; (2) identification of relationships among different risk factors based on statistical analysis methods; and (3) user-specified information retrieval using data mining techniques for safety management. This paper presents an overall methodology and preliminary results of the first stage research conducted with 101 accident investigation reports.