970 resultados para Engineer
Resumo:
We have fabricated titanium and vanadium supersaturated silicon layers on top of a silicon substrate by means of ion implantation and pulsed laser melting processes. This procedure has proven to be suitable to fabricate an intermediate band (IB) material, i.e. a semiconductor material with a band of allowed states within the bandgap. Sheet resistance and Hall mobility measurements as a function of the temperature show an unusual behavior that has been well explained in the framework of the IB material theory, supposing that we are dealing with a junction formed by the IB material top layer and the n-Si substrate. Using an analytical model that fits with accuracy the experimental sheet resistance and mobility curves, we have obtained the values of the exponential factor for the thermically activated junction resistance of the bilayer, showing important differences as a function of the implanted element. These results could allow us to engineer the IB properties selecting the implanted element depending on the required properties for a specific application.
Resumo:
The present investigation addresse the influence of laser welding process-ing parameters used for joining dis-similar metals (ferritic to austenitic steel), on the induced residual stress field. Welding was performed on a Nd:YAG laser DY033 (3300 W) in a continuous wave (CW), keyhole mode. The base metals (BM) employed in this study are AISI 1010 carbon steel (CS) and AISI 304L austenitic stainless steel (SS). Pairs of dissimilar plates of 200 mm x 45 mm x 3 mm were butt joined by laser welding. Different sets of parameters were used to engineer the base metals apportionment at joint formation, namely distinct dilution rates. Residual strain scanning, carried out by neutron diffraction was used to assess the joints. Through-thickness residual stress maps were determined for the laser welded samples of dis-similar steels using high spatial reso-lution. As a result, an appropriate set of processing parameters, able to mi-nimize the local tensile residual stress associated to the welding process, was found.
Resumo:
Consideraciones sobre la ductilidad en zonas sísmicas. This paper analyses the ductile behavior of a highway overpass located in a seismic zone. The paper presents the results of a pushover analysis that enables the design engineer to estimate the behavior of the bridge’s columns in two directions in an independent manner. The differences with the theoretical bilinear behavior are described and explained. Indications are given on the need and possibilities of taking advantage of ductility in different seismic events scenarios.
Resumo:
In recent years a great number of high speed railway bridges have been constructed within the Spanish borders. Due to the demanding high speed trains route's geometrical requirements, bridges frequently show remarkable lengths. This fact is the main reason why railway bridges are overall longer than roadway bridges. In the same line, it is also worth highlighting the importance of high speed trains braking forces compared to vehicles. While vehicles braking forces can be tackled easily, the railway braking forces demand the existence of a fixed-point. It is generally located at abutments where the no-displacements requirement can be more easily achieved. In some other cases the fixed-point is placed in one of the interior columns. As a consequence of these bridges' length and the need of a fixed-point, temperature, creep and shrinkage strains lead to fairly significant deck displacements, which become greater with the distance to the fixed-point. These displacements need to be accommodated by the piers and bearings deformation. Regular elastomeric bearings are not able to allow such displacements and therefore are not suitable for this task. For this reason, the use of sliding PTFE POT bearings has been an extensive practice mainly because they permit sliding with low friction. This is not the only reason of the extensive use of these bearings to high-speed railways bridges. The value of the vertical loads at each bent is significantly higher than in roadway bridges. This is so mainly because the live loads due to trains traffic are much greater than vehicles. Thus, gravel rails foundation represents a non-negligible permanent load at all. All this together increases the value of vertical loads to be withstood. This high vertical load demand discards the use of conventional bearings for excessive compressions. The PTFE POT bearings' higher technology allows to accommodate this level of compression thanks to their design. The previously explained high-speed railway bridge configuration leads to a key fact regarding longitudinal horizontal loads (such as breaking forces) which is the transmission of these loads entirely to the fixed-point alone. Piers do not receive these longitudinal horizontal loads since PTFE POT bearings displayed are longitudinally free-sliding. This means that longitudinal horizontal actions on top of piers will not be forces but imposed displacements. This feature leads to the need to approach these piers design in a different manner that when piers are elastically linked to superstructure, which is the case of elastomeric bearings. In response to the previous, the main goal of this Thesis is to present a Design Method for columns displaying either longitudinally fixed POT bearings or longitudinally free PTFE POT bearings within bridges with fixed-point deck configuration, applicable to railway and road vehicles bridges. The method was developed with the intention to account for all major parameters that play a role in these columns behavior. The long process that has finally led to the method's formulation is rooted in the understanding of these column's behavior. All the assumptions made to elaborate the formulations contained in this method have been made in benefit of conservatives results. The singularity of the analysis of columns with this configuration is due to a combination of different aspects. One of the first steps of this work was to study they of these design aspects and understand the role each plays in the column's response. Among these aspects, special attention was dedicated to the column's own creep due to permanent actions such us rheological deck displacements, and also to the longitudinally guided PTFE POT bearings implications in the design of the column. The result of this study is the Design Method presented in this Thesis, that allows to work out a compliant vertical reinforcement distribution along the column. The design of horizontal reinforcement due to shear forces is not addressed in this Thesis. The method's formulations are meant to be applicable to the greatest number of cases, leaving to the engineer judgement many of the different parameters values. In this regard, this method is a helpful tool for a wide range of cases. The widespread use of European standards in the more recent years, in particular the so-called Eurocodes, has been one of the reasons why this Thesis has been developed in accordance with Eurocodes. Same trend has been followed for the bearings design implications, which are covered by the rather recent European code EN-1337. One of the most relevant aspects that this work has taken from the Eurocodes is the non-linear calculations security format. The biaxial bending simplified approach that shows the Design Method presented in this work also lies on Eurocodes recommendations. The columns under analysis are governed by a set of dimensionless parameters that are presented in this work. The identification of these parameters is a helpful for design purposes for two columns with identical dimensionless parameters may be designed together. The first group of these parameters have to do with the cross-sectional behavior, represented in the bending-curvature diagrams. A second group of parameters define the columns response. Thanks to this identification of the governing dimensionless parameters, it has been possible what has been named as Dimensionless Design Curves, which basically allows to obtain in a reduced time a preliminary vertical reinforcement column distribution. These curves are of little use nowadays, firstly because each family of curves refer to specific values of many different parameters and secondly because the use of computers allows for extremely quick and accurate calculations.
Resumo:
La presente tesis doctoral con título "Contribution to Active Multi-Beam Reconfigurable Antennas for L and S Bands" ha sido desarrollada por el investigador ingeniero de telecomunicación estudiante de doctorado Javier García-Gasco Trujillo en el Grupo de Radiación del Departamento de Señales, Sistemas y Radiocomunicaciones de la ETSI de Telecomunicación de la Universidad Politécnica de Madrid bajo la dirección de los doctores Manuel Sierra Pérez y José Manuel Fernández González. Durante décadas, el desarrollo de antenas de apuntamiento electrónico ha estado limitado al área militar. Su alto coste y su gran complejidad eran los mayores obstáculos que frenaban la introducción de esta tecnología en aplicaciones comerciales de gran escala. La reciente aparición de componentes de estado sólido prácticos, fiables, y de bajo coste ha roto la barrera del coste y ha reducido la complejidad, haciendo que las antenas reconfigurables de apuntamiento electrónico sean una opción viable en un futuro cercano. De esta manera, las antenas phased array podrían llegar a ser la joya de la corona que permitan alcanzar los futuros retos presentes en los sistemas de comunicaciones tanto civiles como militares. Así pues, ahora es el momento de investigar en el desarrollo de antenas de apuntamiento electrónico de bajo coste, donde los nuevos componentes de estado sólido comerciales forman el núcleo duro de la arquitectura. De esta forma, el estudio e implementación de estos arrays de antenas activas de apuntamiento electrónico capaces de controlar la fase y amplitud de las distintas señales implicadas es uno de los grandes retos de nuestro tiempo. Esta tesis se enfrenta a este desafío, proponiendo novedosas redes de apuntamiento electrónico e innovadores módulos de transmisión/recepción (T/R) utilizando componentes de estado sólido de bajo coste, que podrán integrar asequibles antenas activas reconfigurables multihaz en bandas L y S. En la primera parte de la tesis se realiza una descripción del estado del arte de las antenas phased array, incluyendo su base teórica y sus ventajas competitivas. Debido a que las contribuciones obtenidas en la presente tesis han sido realizadas dentro de distintos proyectos de investigación, donde se han manejada antenas de simple/doble polarización circular y simple/doble banda de trabajo, se describen detenidamente los dos proyectos más relevantes de la investigación: el radar de basura espacial de la Agencia Espacial Europea (ESA), Space Situational Awareness (SSA); y la estación base de seguimiento y control de satélites de órbita baja, GEOdesic Dome Array (GEODA). Sin lugar a dudas, los dispositivos desfasadores son uno de los componentes clave en el diseño de antenas phased arrays. Recientemente se ha observado una gran variación en el precio final de estos dispositivos, llegando en ocasiones a límites inasequibles. Así pues, se han propuesto distintas técnicas de conformación de haz alternativas a la utilización de componentes desfasadores comerciales: el desfasador de líneas conmutadas, la red de haz conmutado, y una novedosa red desfasadora divisora/combinadora de potencia. Para mostrar un uso práctico de las mismas, se ha propuesto el uso de las tres alternativas para el caso práctico del subarray de cinco elementos de la celda GEODA-SARAS. Tras dicho estudio se obtiene que la novedosa red desfasadora divisora/combinadora de potencia propuesta es la que mejor relación comportamiento/coste presenta. Para verificar su correcto funcionamiento se construye y mide los dos bloques principales de los que está compuesta la red total, comprobando que en efecto la red responde según lo esperado. La estructura más simple que permite realizar un barrido plano es el array triangular de tres elementos. Se ha realizado el diseño de una nueva red multihaz que es capaz de proporcionar tres haces ortogonales en un ángulo de elevación _0 y un haz adicional en la dirección broadside utilizando el mencionado array triangular de tres elementos como antena. En primer lugar se realizar una breve introducción al estado del arte de las redes clásicas multihaz. Así mismo se comentan innovadores diseños de redes multihaz sin pérdidas. El estudio da paso a las redes disipativas, de tal forma que se analiza su base matemática y se muestran distintas aplicaciones en arrays triangulares de tres elementos. Finalmente, la novedosa red básica propuesta se presenta, mostrando simulaciones y medidas de la misma para el caso prácticoo de GEODA. También se ha diseñado, construido y medido una red compuesta por dos redes básicas complementarias capaz de proporcionar seis haces cuasi-ortogonales en una dirección _0 con dos haces superpuestos en broadside. La red propuesta queda totalmente validada con la fabricación y medida de estos con prototipos. Las cadenas de RF de los módulos T/R de la nueva antena GEODA-SARAS no son algo trivial. Con el fin de mostrar el desarrollo de una cadena compleja con una gran densidad de componentes de estado sólido, se presenta una descripción detallada de los distintos componentes que integran las cadenas de RF tanto en transmisión como en recepción de la nueva antena GEODA-SARAS. Tras presentar las especificaciones de la antena GEODA-SARA y su diagrama de bloques esquemático se describen los dos bloques principales de las cadenas de RF: la celda de cinco elementos, y el módulo de conversión de panel. De la misma manera también se presentará el módulo de calibración integrado dentro de los dos bloques principales. Para comprobar que el funcionamiento esperado de la placa es el adecuado, se realizará un análisis que tratará entre otros datos: la potencia máxima en la entrada del transmisor (comprobando la saturación de la cadena), señal de recepción mínima y máxima (verificando el rango de sensibilidad requerido), y el factor G/T (cumpliendo la especificación necesaria). Así mismo se mostrará un breve estudio del efecto de la cuantificación de la fase en el conformado de haz de RF. Los estudios muestran que la composición de las cadenas de RF permite el cumplimiento de las especificaciones necesarias. Finalmente la tesis muestra las conclusiones globales del trabajo realizado y las líneas futuras a seguir para continuar con esta línea de investigación. ABSTRACT This PhD thesis named "Contribution to Active Multi-Beam Reconfigurable Antennas for L and S Bands", has been written by the Electrical Engineer MSc. researcher Javier García-Gasco Trujillo in the Grupo de Radiación of the Departamento de Señales, Sistemas y Radiocomunicaciones from the ETSI de Telecomunicación of the Universidad Politécnica de Madrid. For decades, the implementation of electronically steerable phased array antennas was confined to the military area. Their high cost and complexity were the major obstacles to introduce this technology in large scale commercial applications. The recent emergence of new practical, low-cost, and highly reliable solid state devices; breaks the barrier of cost and reduces the complexity, making active phased arrays a viable future option. Thus, phased array antennas could be the crown jewel that allow to meet the future challenges in military and civilian communication systems. Now is time to deploy low-cost phased array antennas, where newly commercial components form the core of the architecture. Therefore, the study and implementation of these novel low-cost and highly efficient solid state phased array blocks capable of controlling signal phase/amplitude accurately is one of the great challenges of our time. This thesis faces this challenge, proposing innovative electronic beam steering networks and transmitter/ receiver (T/R) modules using affordable solid state components, which could integrate fair reconfigurable phased array antennas working in L and S bands. In the first part of the thesis, a description of the state of art of phased array antennas, including their fundamentals and their competitive advantages, is presented. Since thesis contributions have been carried out for different research projects, where antennas with single/double circular polarization and single/double working frequency bands have been examined, frameworks of the two more important projects are detailed: the Space Situational Awareness (SSA) programme from the European Space Agency (ESA), and the GEOdesic Dome Array (GEODA) project from ISDEFE-INSA and the ESA. Undoubtedly, phase shifter devices are one of the key components of phased array antennas. Recent years have witnessed wide fluctuations in commercial phase shifter prices, which sometimes led to unaffordable limit. Several RF steering technique alternatives to the commercial phase shifters are proposed, summarized, and compared: the switched line phase shifter, the switched-beam network, and the novel phase shifter power splitter/combiner network. In order to show a practical use of the three different techniques, the five element GEODA-SARAS subarray is proposed as a real case of study. Finally, a practical study of a newly phase shifter power splitter/combiner network for a subarray of five radiating elements with triangular distribution is shown. Measurements of the two different phase shifter power splitter/combiner prototypes integrating the whole network are also depicted, demonstrating their proper performance. A triangular cell of three radiating elements is the simplest way to obtain a planar scanner. A new multibeam network configuration that provides three orthogonal beams in a desired _0 elevation angle and an extra one in the broadside steering direction for a triangular array of three radiating elements is introduced. Firstly, a short introduction to the state of art of classical multi-beam networks is presented. Lossless network analysis, including original lossless network designs, are also commented. General dissipative network theory as well as applications for array antennas of three radiating elements are depicted. The proposed final basic multi-beam network are simulated, built and measured to the GEODA cell practical case. A combined network that provides six orthogonal beams in a desired _0 elevation angle and a double seventh one in the broadside direction by using two complementary proposed basic networks will be shown. Measurements of the whole system will be also depicted, verifying the expected behavior. GEODA-SARAS T/R module RF chains are not a trivial design. A thorough description of all the components compounding GEODA-SARAS T/R module RF chains is presented. After presenting the general specifications of the GEODA-SARAS antenna and its block diagrams; two main blocks of the RF chains, the five element cell and the panel conversion module, are depicted and analyzed. Calibration module integrated within the two main blocks are also depicted. Signal flow throw the system analyzing critical situations such as maximum transmitted power (testing the chain unsaturation), minimum and maximum receiving signal (verifying sensitivity range), maximum receiver interference signals (assuring a proper reception), and G/T factor (fulfilling the technical specification) are evaluated. Phase quantization error effects are also listed. Finally, the manuscript contains the conclusions drawn of the present research and the future work.
Resumo:
According to the PMBOK (Project Management Body of Knowledge), project management is “the application of knowledge, skills, tools, and techniques to project activities to meet the project requirements” [1]. Project Management has proven to be one of the most important disciplines at the moment of determining the success of any project [2][3][4]. Given that many of the activities covered by this discipline can be said that are “horizontal” for any kind of domain, the importance of acknowledge the concepts and practices becomes even more obvious. The specific case of the projects that fall in the domain of Software Engineering are not the exception about the great influence of Project Management for their success. The critical role that this discipline plays in the industry has come to numbers. A report by McKinsey & Co [4] shows that the establishment of programs for the teaching of critical skills of project management can improve the performance of the project in time and costs. As an example of the above, the reports exposes: “One defense organization used these programs to train several waves of project managers and leaders who together administered a portfolio of more than 1,000 capital projects ranging in Project management size from $100,000 to $500 million. Managers who successfully completed the training were able to cut costs on most projects by between 20 and 35 percent. Over time, the organization expects savings of about 15 percent of its entire baseline spending”. In a white paper by the PMI (Project Management Institute) about the value of project management [5], it is stated that: “Leading organizations across sectors and geographic borders have been steadily embracing project management as a way to control spending and improve project results”. According to the research made by the PMI for the paper, after the economical crisis “Executives discovered that adhering to project management methods and strategies reduced risks, cut costs and improved success rates—all vital to surviving the economic crisis”. In every elite company, a proper execution of the project management discipline has become a must. Several members of the software industry have putted effort into achieving ways of assuring high quality results from projects; many standards, best practices, methodologies and other resources have been produced by experts from different fields of expertise. In the industry and the academic community, there is a continuous research on how to teach better software engineering together with project management [4][6]. For the general practices of Project Management the PMI produced a guide of the required knowledge that any project manager should have in their toolbox to lead any kind of project, this guide is called the PMBOK. On the side of best practices 10 and required knowledge for the Software Engineering discipline, the IEEE (Institute of Electrical and Electronics Engineers) developed the SWEBOK (Software Engineering Body of Knowledge) in collaboration with software industry experts and academic researchers, introducing into the guide many of the needed knowledge for a 5-year expertise software engineer [7]. The SWEBOK also covers management from the perspective of a software project. This thesis is developed to provide guidance to practitioners and members of the academic community about project management applied to software engineering. The way used in this thesis to get useful information for practitioners is to take an industry-approved guide for software engineering professionals such as the SWEBOK, and compare the content to what is found in the PMBOK. After comparing the contents of the SWEBOK and the PMBOK, what is found missing in the SWEBOK is used to give recommendations on how to enrich project management skills for a software engineering professional. Recommendations for members of the academic community on the other hand, are given taking into account the GSwE2009 (Graduated Software Engineering 2009) standard [8]. GSwE2009 is often used as a main reference for software engineering master programs [9]. The standard is mostly based on the content of the SWEBOK, plus some contents that are considered to reinforce the education of software engineering. Given the similarities between the SWEBOK and the GSwE2009, the results of comparing SWEBOK and PMBOK are also considered valid to enrich what the GSwE2009 proposes. So in the end the recommendations for practitioners end up being also useful for the academic community and their strategies to teach project management in the context of software engineering.
Resumo:
In this article, a model for the determination of displacements, strains, and stresses of a submarine pipeline during its construction is presented. Typically, polyethylene outfall pipelines are the ones treated by this model. The process is carried out from an initial floating situation to the final laying position on the seabed. The following control variables are considered in the laying process: the axial load in the pipe, the flooded inner length, and the distance of the control barge from the coast. External loads such as self-weight, dead loads, and forces due to currents and small waves are also taken into account.This paper describes both the conceptual framework for the proposed model and its practical application in a real engineering situation. The authors also consider how the model might be used as a tool to study how sensitive the behavior of the pipeline is to small changes in the values of the control variables. A detailed description of the actions is considered, especially the ones related to the marine environment such as buoyancy, current, and sea waves. The structural behavior of the pipeline is simulated in the framework of a geometrically nonlinear dynamic analysis. The pipeline is assumed to be a two-dimensional Navier_Bernoulli beam. In the nonlinear analysis an updated Lagrangian formulation is used, and special care is taken regarding the numerical aspects of sea bed contact, follower forces due to external water pressures, and dynamic actions. The paper concludes by describing the implementation of the proposed techniques, using the ANSYS computer program with a number of subroutines developed by the authors. This implementation permits simulation of the two-dimensional structural pipe behavior of the whole construction process. A sensitivity analysis of the bending moments, axial forces, and stresses for different values of the control variables is carried out. Using the techniques described, the engineer may optimize the construction steps in the pipe laying process
Resumo:
El objetivo de esta Tesis es crear un Modelo de Diseño Orientado a Marcos que, intermedio entre el Mundo Externo y el Modelo Interno del Mundo que supone el sistema ímplementado, disminuya la pérdida de conocimiento que se produce al formalizar la realidad en Bases de Conocimientos. El modelo disminuye la pérdida de conocimiento al formalizar Bases de Conocimiento, acercando el formalismo de Marcos al Mundo Externo, porque: 1. Crea una base teórica que uniformiza el concepto de Marco en el plano de la Formalización, estableciendo un conjunto de restricciones sintácticas y semánticas que impedirán, al Ingeniero del Conocimiento (IC) cuando formaliza, definir elementos no permitidos o el uso indebido de ellos. 2. Se incrementa la expresividad del formalismo al asociar a cada una de las propiedades de un marco clase un parámetro adicional que simboliza la representatividad de la propiedad en el concepto. Este parámetro, y las técnicas de inferencia que trabajan con él, permitirán al IC introducir en el Modelo Formalizado conocimiento que antes no introducía al construir la base de conocimientos y que, sin embargo, sí existía en la realidad. 3. Se propone una técnica de equiparación que trabaja con el conocimiento incierto presente en el dominio. Esta técnica de equiparación, utiliza la representatividad de las propiedades en los marcos clase y el grado de certeza de las propiedades de las entidades para calcular el valor de equiparación y, así, determinar en qué medida los marcos clase seleccionados son consistentes con la descripción de la situación actual dada por una entidad. 4. Proporciona nuevas técnicas de inferencia basadas en la transferencia de propiedades y modifica las ya existentes. Las transferencias de propiedades realizadas sobre relaciones "ad hoc" definidas por el IC al construir el sistema, es una nueva técnica de inferencia independiente y complementaria a la transferencia de propiedades llamada tradicionalmente Herencia (cesión de propiedades entre padres e hijos). A esta nueva técnica, se le ha llamado Donación, es decir, cesión de propiedades entre marcos sin parentesco. Como aportación práctica, se ha construido un entorno de construcción de Sistemas Basados en el Conocimiento formalizados en Marcos, donde se han introducido todos los nuevos conceptos del Modelo Teórico de la Tesis. Se trata de una cierta anidación. Es decir, son marcos que permiten formalizar cualquier SBC en marcos. El entorno permitirá al IC formalizar bases de conocimientos automáticamente y éste podrá validar el conocimiento del dominio en la fase de formalización en lugar de tener que esperar a que la BC esté implementada. Todo ello lleva a describir el Modelo de Diseño Orientado a Marcos como un puente que aproxima y comunica el Mundo Externo con el Modelo Interno asociado a la realidad e implementado en una computadora, disminuyendo así las diversas pérdidas de conocimiento que si bien no ocurren simultáneamente al construir Sistemas Basados en el Conocimiento, sí coexisten en él.---ABSTRACT---The goal of this thesis is to créate a Frame-Orlented Deslgn Model that, bridging the Outside World and the implemented system's Internal Model of the World, reduces the amount of knowledge lost when reality is formalized in Knowledge Bases (KB). The model diminishes the loss of knowledge when formalizing a KB and brings the Frame-formalized Model closer to the Outside World because: 1. It creates a theory that standardizes the concept of trame at the formalization level to establish a set of syntactic and semantic constraints that will prevent the Knowledge Engineer (KE) from defining forbidden elements or their undue use in the formalization process. 2. The formalism's expressiveness is increased by associating an additional parameter to each of the properties of a class frame to symbolize the representativeness of the concept property. This parameter and the related inference techniques will allow the KE to enter knowledge into the Formalized Model that actually existed but that was not used previously when building the KB. 3. The proposed technique involves matching and works with uncertain knowledge present in the domain. This matching technique takes the representativeness of the properties in the class frame and the degree of certainty of the properties of the entities to calcúlate the matching valué and thus determine to what extent the class frames selected are consistent with the description of the present situation given by an entity. 4. It offers new inference techniques based on property transfer and alters existing ones. Property transfer on ad hoc relations defined by the KE when building a system is a new inference technique independent of and complementary to property transfer traditionally termed Inheritance (transfer of properties between parents and children). This new technique has been callad Donation (transfer of properties between trames without relationships). 5. It improves control of the procedural knowledge defined in the trames by introducing OO concepta. A frame-formalized KBS building environment has been constructed, incorporating all the new concepts of the theoretical model set out in the thesis. There is some embedding, that is, they are trames that provide for any KBS to be formalizad in trames. The environment will enable the KE to formaliza KB automatically, and he will be able to valídate the domain knowledge in the formalization stage instead of havíng to wait until the KB has been implemented. This is a description of the Frame-oriented Design Model, a bridge that brings closer and communicates the Outside World with the Interna! Model associated to reality and implemented on a computar, thus reducing the different losses in knowledge that, though they do not occur simultaneosly when building a Knowledge-based System, coexist within it.
Resumo:
The School of Industrial Engineering at Universidad Politécnica de Madrid (ETSII-UPM) has been promoting student-centred teaching-learning activities, according to the aims of the Bologna Declaration, well before the official establishment of the European Area of Higher Education. Such student-centred teaching-learning experiences led us to the conviction that project based learning is rewarding, both for students and academics, and should be additionally promoted in our new engineering programmes, adapted to the Grade-Master structure. The level of commitment of our teachers with these activities is noteworthy, as the teaching innovation experiences carried out in the last ten years have led to the foundation of 17 Teaching Innovation Groups at ETSII-UPM, hence leading the ranking of teaching innovation among all UPM centres. Among interesting CDIO activities our students have taken part in especially complex projects, including the Formula Student, linked to the complete development of a competition car, and the Cybertech competition, aimed at the design, construction and operation of robots for different purposes. Additional project-based learning teamwork activities have been linked to toy design, to the development of medical devices, to the implementation of virtual laboratories, to the design of complete industrial installations and factories, among other activities detailed in present study. The implementation of Bologna process will culminate at ETSII-UPM with the beginning of the Master’s Degree in Industrial Engineering, in academic year 2014-15. The program has been successfully approved by the Spanish Agency for Accreditation (ANECA), with the inclusion of a set of subjects based upon the CDIO methodology denominated generally “INGENIA”, linked to the Spanish “ingeniar” (to provide ingenious solutions), also related etymologically in Spanish with “ingeniero”, engineer. INGENIA students will live through the complete development process of a complex product or system and there will be different kind of projects covering most of the engineering majors at ETSII-UPM.
Resumo:
Una técnica de refuerzo de elementos flectados en general y, en particular, de vigas y forjados de hormigón armado, consiste en la disposición de perfiles metálicos por debajo de los elementos a reforzar y retacados a ellos. En muchos casos este refuerzo se diseña con un planteamiento pasivo, es decir, los perfiles no entran en carga hasta que no se incrementan las acciones sobre el elemento reforzado, o lo hacen sólo ligeramente y de forma cuantitativamente no controlada efectuando el retacado mediante cuñas metálicas. En el presente trabajo se estudia la alternativa del refuerzo de vigas de hormigón armado frente a momentos flectores con un planteamiento activo, introduciendo unas fuerzas (por ejemplo, mediante gatos o barras roscadas) entre el perfil y el elemento a reforzar, y retacando posteriormente el perfil a la viga en los puntos de introducción de las fuerzas, mediante cuñas metálicas, mortero, etc. La propuesta que formulamos en el presente trabajo de investigación para el control de las fuerzas introducidas consiste en la medida de las flechas que se producen en el perfil metálico al hacerlo reaccionar contra la viga. Esto permite el empleo de procedimientos sencillos para la predeformación del perfil que no dispongan de dispositivos de medida de la carga introducida, o bien controlar la veracidad de las medidas de las fuerzas que dan tales dispositivos. La gran fiabilidad que tiene el cálculo de flechas en jácenas metálicas hace que con este procedimiento se puedan conocer con gran precisión las fuerzas introducidas. Las medidas de las flechas se pueden llevar a cabo mediante los procedimientos de instrumentación habituales en pruebas de carga, con una precisión más que suficiente para conocer y controlar con fiabilidad el valor de las fuerzas que el perfil ejerce sobre la viga. Los perfiles necesarios para el refuerzo con esta técnica son netamente inferiores a los que se precisarían con el planteamiento pasivo antes indicado. En el trabajo de investigación se recoge un estudio sobre el número, posición y valor de las fuerzas de refuerzo a introducir, en función de la carga para la que se diseña el refuerzo y la capacidad resistente del elemento a reforzar, y se analizan los valores máximos que pueden tener dichas fuerzas, en función de la capacidad de la pieza frente a momentos de signo contrario a los debidos a las cargas gravitatorias. A continuación se analiza la interacción viga-perfil al incrementarse las cargas sobre la viga desde el instante de la ejecución del refuerzo, interacción que hace variar el valor de las fuerzas que el perfil ejerce sobre la viga. Esta variación permite contar con un incremento en las fuerzas de refuerzo si, con las cargas permanentes presentes al reforzar, no podemos introducirlas inicialmente con el valor necesario, o si se producen pérdidas en las propias fuerzas. Este es uno de los criterios a la hora de seleccionar las características del perfil. Por el contrario, dicha variación puede suponer que en algunos puntos a lo largo del vano se supere la capacidad a flexión frente a momentos de signo contrario a los debidos a las cargas gravitatorias, lo que también debe ser tenido en cuenta. Seguidamente se analizan diferentes aspectos que producen una variación en el valor de las fuerzas de refuerzo, como son las deformaciones diferidas del hormigón (fluencia y retracción), los gradientes de temperatura en la pieza, o la actuación de sobrecargas en los vanos adyacentes. Se concluye los efectos de estos fenómenos, que en ocasiones tienen gran influencia, pueden ser cuantificados por el proyectista, recogiéndose propuestas sencillas para su consideración en casos habituales. Posteriormente recogemos una propuesta de metodología de comprobación del refuerzo, en cuanto a cómo considerar la fisuración y evolución del módulo de deformación de la viga, la introducción de la seguridad, la influencia de las tolerancias de laminación en el perfil sobre el valor calculado de las flechas necesarias en el perfil para introducir las fuerzas iniciales proyectadas, o la situación accidental de fuego, entre otros aspectos. Por último, se exponen las conclusiones más relevantes de la investigación realizada, y se proponen futuras líneas de investigación. One technique for strengthening flexural members in general, and reinforced concrete beams and slabs in particular, entails caulking the underside of these members with steel shapes. This sort of strengthening is often designed from a passive approach; i.e., until the load is increased, the shapes are either not loaded or are only slightly loaded to some unquantified extent by caulking with steel shims. The present study explored the possibility of actively strengthening the capacity of reinforced concrete beams to resist bending moments by applying forces (with jacks or threaded bars, for instance) between the shape and the member to be strengthened. The shape is subsequently caulked under the beam at the points where the forces are applied with steel shims, mortar or similar. The proposal put forward in the present study to monitor the forces applied consists in measuring the deflection on the steel shape as it reacts against the beam. With this technique, the shape can be pre-strained using simple procedures that do not call for devices to measure the force applied, or the accurancy of the respective measurements can be verified. As deflection calculations in steel girders are extremely reliable, the forces applied with this procedure can be very precisely determined. Standard instrumental procedures for load testing can be used to measure deflection with more than sufficient precision to reliably determine and monitor the value of the forces exerted on the beam by the shape. Moreover, the shapes required to strengthen members with this technique are substantially smaller than the ones needed in the aforementioned passive approach. This study addressed the number, position and value of the strengthening forces to be applied in terms of the load for which strengthening was designed and the bearing capacity of the member to be strengthened. The maximum value of such forces was also analysed as a function of the capacity of the member to resist counter-gravity moments. An analysis was then conducted of beam-shape interaction when the load on the beam raises since the instant that strengthening is applied, interaction that alters the forces applied to the beam by the shape. This variation can provide an increment in the forces if we cannot introduce them initially with the value calculated as necessary because they were limited by the permanent loads existing when strengthening, or if losses occur in the forces themselves. This is one of the criteria for defining shape specifications. Conversely, such variation may cause the forces to exceed beam counter-gravity bending strength at some points in the span, a development that must also be taken into consideration. Other factors inducing variations in the strengthening force values were then analysed, including deferred concrete strain (creep and shrinkage), temperature gradients in the member and the live loads acting on adjacent spans. The inference drawn was that these developments, which may on occasion have a heavy impact, can be quantified by the design engineer, particularly in ordinary situations, for which simple procedures are proposed. Methodology is likewise proposed for verifying strength in terms of how to appraise beam's cracking and variations in modulus of deformation; safety concerns; the effect of shape lamination tolerance on the calculated deflection necessary for the shape to apply the design forces; and fire-induced situations, among others. Lastly, the most prominent conclusions are discussed and future lines of research are suggested.
Resumo:
Logic programming (LP) is a family of high-level programming languages which provides high expressive power. With LP, the programmer writes the properties of the result and / or executable specifications instead of detailed computation steps. Logic programming systems which feature tabled execution and constraint logic programming have been shown to increase the declarativeness and efficiency of Prolog, while at the same time making it possible to write very expressive programs. Tabled execution avoids infinite failure in some cases, while improving efficiency in programs which repeat computations. CLP reduces the search tree and brings the power of solving (in)equations over arbitrary domains. Similarly to the LP case, CLP systems can also benefit from the power of tabling. Previous implementations which take ful advantage of the ideas behind tabling (e.g., forcing suspension, answer subsumption, etc. wherever it is necessary to avoid recomputation and terminate whenever possible) did not offer a simple, well-documented, easy-to-understand interface. This would be necessary to make the integratation of arbitrary CLP solvers into existing tabling systems possible. This clearly hinders a more widespread usage of the combination of both facilities. In this thesis we examine the requirements that a constraint solver must fulfill in order to be interfaced with a tabling system. We propose and implement a framework, which we have called Mod TCLP, with a minimal set of operations (e.g., entailment checking and projection) which the constraint solver has to provide to the tabling engine. We validate the design of Mod TCLP by a series of use cases: we re-engineer a previously existing tabled constrain domain (difference constraints) which was connected in an ad-hoc manner with the tabling engine in Ciao Prolog; we integrateHolzbauer’s CLP(Q) implementationwith Ciao Prolog’s tabling engine; and we implement a constraint solver over (finite) lattices. We evaluate its performance with several benchmarks that implement a simple abstract interpreter whose fixpoint is reached by means of tabled execution, and whose domain operations are handled by the constraint over (finite) lattices, where TCLP avoids recomputing subsumed abstractions.---ABSTRACT---La programación lógica con restricciones (CLP) y la tabulación son extensiones de la programación lógica que incrementan la declaratividad y eficiencia de Prolog, al mismo tiempo que hacen posible escribir programasmás expresivos. Las implementaciones anteriores que integran completamente ambas extensiones, incluyendo la suspensión de la ejecución de objetivos siempre que sea necesario, la implementación de inclusión (subsumption) de respuestas, etc., en todos los puntos en los que sea necesario para evitar recomputaciones y garantizar la terminación cuando sea posible, no han proporcionan una interfaz simple, bien documentada y fácil de entender. Esta interfaz es necesaria para permitir integrar resolutores de CLP arbitrarios en el sistema de tabulación. Esto claramente dificulta un uso más generalizado de la integración de ambas extensiones. En esta tesis examinamos los requisitos que un resolutor de restricciones debe cumplir para ser integrado con un sistema de tabulación. Proponemos un esquema (y su implementación), que hemos llamadoMod TCLP, que requiere un reducido conjunto de operaciones (en particular, y entre otras, entailment y proyección de almacenes de restricciones) que el resolutor de restricciones debe ofrecer al sistema de tabulación. Hemos validado el diseño de Mod TCLP con una serie de casos de uso: la refactorización de un sistema de restricciones (difference constraints) previamente conectado de un modo ad-hoc con la tabulación de Ciao Prolog; la integración del sistema de restricciones CLP(Q) de Holzbauer; y la implementación de un resolutor de restricciones sobre retículos finitos. Hemos evaluado su rendimiento con varios programas de prueba, incluyendo la implementación de un intérprete abstracto que alcanza su punto fijo mediante el sistema de tabulación y en el que las operaciones en el dominio son realizadas por el resolutor de restricciones sobre retículos (finitos) donde TCLP evita la recomputación de valores abstractos de las variables ya contenidos en llamadas anteriores.
Resumo:
El tiempo de concentración de una cuenca sigue siendo relativamente desconocido para los ingenieros. El procedimiento habitual en un estudio hidrológico es calcularlo según varias fórmulas escogidas entre las existentes para después emplear el valor medio obtenido. De esta media se derivan los demás resultados hidrológicos, resultados que influirán en el futuro dimensionamiento de las infraestructuras. Este trabajo de investigación comenzó con el deseo de conseguir un método más fiable y objetivo que permitiera obtener el tiempo de concentración. Dada la imposibilidad de poner en práctica ensayos hidrológicos en una cuenca física real, ya que no resulta viable monitorizar perfectamente la precipitación ni los caudales de salida, se planteó llevar a cabo los ensayos de forma simulada, con el empleo de modelos hidráulicos bidimensionales de lluvia directa sobre malla 2D de volúmenes finitos. De entre todos los disponibles, se escogió InfoWorks ICM, por su rapidez y facilidad de uso. En una primera fase se efectuó la validación del modelo hidráulico elegido, contrastando los resultados de varias simulaciones con la formulación analítica existente. Posteriormente, se comprobaron los valores de los tiempos de concentración obtenidos con las expresiones referenciadas en la bibliografía, consiguiéndose resultados muy satisfactorios. Una vez verificado, se ejecutaron 690 simulaciones de cuencas tanto naturales como sintéticas, incorporando variaciones de área, pendiente, rugosidad, intensidad y duración de las precipitaciones, a fin de obtener sus tiempos de concentración y retardo. Esta labor se realizó con ayuda de la aceleración del cálculo vectorial que ofrece la tecnología CUDA (Arquitectura Unificada de Dispositivos de Cálculo). Basándose en el análisis dimensional, se agruparon los resultados del tiempo de concentración en monomios adimensionales. Utilizando regresión lineal múltiple, se obtuvo una nueva formulación para el tiempo de concentración. La nueva expresión se contrastó con las formulaciones clásicas, habiéndose obtenido resultados equivalentes. Con la exposición de esta nueva metodología se pretende ayudar al ingeniero en la realización de estudios hidrológicos. Primero porque proporciona datos de manera sencilla y objetiva que se pueden emplear en modelos globales como HEC-HMS. Y segundo porque en sí misma se ha comprobado como una alternativa realmente válida a la metodología hidrológica habitual. Time of concentration remains still fairly imprecise to engineers. A normal hydrological study goes through several formulae, obtaining concentration time as the median value. Most of the remaining hydrologic results will be derived from this value. Those results will determine how future infrastructures will be designed. This research began with the aim to acquire a more reliable and objective method to estimate concentration times. Given the impossibility of carrying out hydrological tests in a real watershed, due to the difficulties related to accurate monitoring of rainfall and derived outflows, a model-based approach was proposed using bidimensional hydraulic simulations of direct rainfall over a 2D finite-volume mesh. Amongst all of the available software packages, InfoWorks ICM was chosen for its speed and ease of use. As a preliminary phase, the selected hydraulic model was validated, checking the outcomes of several simulations over existing analytical formulae. Next, concentration time values were compared to those resulting from expressions referenced in the technical literature. They proved highly satisfactory. Once the model was properly verified, 690 simulations of both natural and synthetic basins were performed, incorporating variations of area, slope, roughness, intensity and duration of rainfall, in order to obtain their concentration and lag times. This job was carried out in a reasonable time lapse with the aid of the parallel computing platform technology CUDA (Compute Unified Device Architecture). Performing dimensional analysis, concentration time results were isolated in dimensionless monomials. Afterwards, a new formulation for the time of concentration was obtained using multiple linear regression. This new expression was checked against classical formulations, obtaining equivalent results. The publication of this new methodology intends to further assist the engineer while carrying out hydrological studies. It is effective to provide global parameters that will feed global models as HEC-HMS on a simple and objective way. It has also been proven as a solid alternative to usual hydrology methodology.
Resumo:
La Ingeniería de Pruebas está especializada en la verificación y validación del Software,y formalmente se define como: “Proceso de desarrollo que emplea métodos rigurosos para evaluar la corrección y calidad del producto a lo largo de todo su ciclo de vida” [3]. Este proceso comprende un conjunto de métodos, procedimientos y técnicas formalmente definidas las cuales, usadas de forma sistemática, facilitan la identificación de la mayor cantidad de errores y fallos posibles de un software. Un software que pase un proceso riguroso de pruebas es un producto de calidad que seguramente facilitará la labor del Ingeniero de Software en la corrección de futuras incidencias, algunas de ellas generadas tras la implantación en el entorno real. Este proceso constituye un área de la Ingeniería del Software y una especialidad por tanto, de la misma. De forma simple, la consecución de una correcta Verificación y Validación del Software requiere de algunas actividades imprescindibles como: - Realizar un plan de pruebas del proyecto. - Actualizar dicho plan y corregirlo en caso necesario. - Revisar los documentos de análisis de requisitos. - Ejecutar las pruebas en las diferentes fases del desarrollo del proyecto. - Documentar el diseño y la ejecución de las pruebas. - Generar documentos con los resultados y anomalías de las pruebas ya ejecutadas. Actualmente, la Ingeniería de Pruebas no es muy reconocida como área de trabajo independiente sino más bien, un área inmersa dentro de la Ingeniería de Software. En el entorno laboral existe el perfil de Ingeniero de Pruebas, sin embargo pocos ingenieros de software tienen claro querer ser Ingenieros de Pruebas (probadores o testers) debido a que nunca han tenido la oportunidad de enfrentarse a actividades prácticas reales dentro de los centros de estudios universitarios donde cursan la carrera. Al ser un área de inherente ejercicio profesional, la parte correspondiente de la Ingeniería de Pruebas suele enfocarse desde un punto de vista teórico más que práctico. Hay muchas herramientas para la creación de pruebas y de ayuda para los ingenieros de pruebas, pero la mayoría son de pago o hechas a medida para grandes empresas que necesitan dicho software. Normalmente la gente conoce lo que es la Ingeniería de Pruebas únicamente cuando se empieza a adquirir experiencia en dicha área en el ejercicio profesional dentro de una empresa. Con lo cual, el acercamiento durante la carrera no necesariamente le ha ofrecido al profesional en Ingeniería, la oportunidad de trabajar en esta rama de la Ingeniería del Software y en algunos casos, NOVATests: Metodología y herramienta software de apoyo para los Ingenieros de Prueba Junior 4 los recién egresados comienzan su vida profesional con algún desconocimiento en este sentido. Es por el conjunto de estas razones, que mi intención en este proyecto es proponer una metodología y una herramienta software de apoyo a dicha metodología, para que los estudiantes de carreras de Ingeniería Software y afines, e ingenieros recién egresados con poca experiencia o ninguna en esta área (Ingenieros de Pruebas Junior), puedan poner en práctica las actividades de la Ingeniería de Pruebas dentro de un entorno lo más cercano posible al ejercicio de la labor profesional. De esta forma, podrían desarrollar las tareas propias de dicha área de una manera fácil e intuitiva, favoreciendo un mayor conocimiento y experiencia de la misma. ABSTRACT The software engineering is specialized in the verification and validation of Software and it is formally defined as: “Development process which by strict methods evaluates and corrects the quality of the product along its lifecycle”. This process contains a number of methods, procedures and techniques formally defined which used systematically make easier the identification of the highest quantity of error and failures within a Software. A software going through this rigorous process of tests will become a quality product that will help the software engineer`s work while correcting incidences. Some of them probably generated after the deployment in a real environment. This process belongs to the Software engineering and therefore it is a specialization itself. Simplifying, the correct verification and validation of a software requires some essential activities such as: -Create a Test Plan of the project - Update this Test Plan and correct if necessary - Check Requirement’s specification documents -Execute the different tests among all the phases of the project - Create the pertinent documentation about design and execution of these tests. - Generate the result documents and all the possible incidences the tests could contain. Currently, the Test engineering is not recognized as a work area but an area immerse within the Software engineering. The professional environment includes the role of Test engineer, but only a few software engineers have clear to become Test engineers (testers) because they have never had the chance to face this activities within the university study centers where they take study of this degree. Since there are little professional environments, this area is focused from a theoretical way instead of a more practical vision. There are plenty of tools helping the Test engineer, but most of them are paid tools or bespoke tools for big companies in need of this software. Usually people know what test engineering is by starting working on it and not before, when people start acquiring experience in this field within a company. Therefore, the degree studied have not approach this field of the Software engineering before and in some cases the graduated students start working without any knowledge in this area. Because of this reasons explained, it is my intention to propose this Project: a methodology and a software tool supporting this methodology so the students of software engineering and similar ones but also graduated students with little experience in this area (Junior Test Engineers), can afford practice in this field and get used to the activities related with the test engineering. Because of this they will be able to carry out the proper tasks of this area easier, enforcing higher and better knowledge and experience of it.
Resumo:
Leyendo distintos artículos en la Revista de Obras Públicas (Jiménez Salas, 1945) uno recuerda a las grandes figuras como Coulomb (1773), Poncelet (1840), Rankine (1856), Culmann (1866), Mohr (1871), Boussinesq (1876) y otros muchos, que construyeron la base de un conocimiento que poco a poco irían facilitando la complicada tarea que suponía la construcción. Pero sus avances eran aproximaciones que presentaban notables diferencias frente al comportamiento de la naturaleza. Esas discrepancias con la naturaleza llegó un momento que se hicieron demasiado patentes. Importantes asientos en la construcción de los modernos edificios, rotura de presas de materiales sueltos y grandes corrimientos de tierras, por ejemplo durante la construcción del canal de Panamá, llevaron a la Sociedad Americana de Ingenieros Civiles (ASCE) a crear un comité que analizase las prácticas de la construcción de la época. Hechos similares se producían en Europa, por ejemplo en desmontes para ferrocarriles, que en el caso de Suecia supusieron unas cuantiosas perdidas materiales y humanas. El ingeniero austriaco-americano Karl Terzaghi (1883) había podido comprobar, en su práctica profesional, la carencia de conocimientos para afrontar muchos de los retos que la naturaleza ofrecía. Inicialmente buscó la respuesta en la geología pero encontró que ésta carecía de la definición necesaria para la práctica de la ingeniería, por lo que se lanzó a una denodada tarea investigadora basada en el método experimental. Comenzó en 1917 con escasos medios, pero pronto llegó a desarrollar algunos ensayos que le permitieron establecer los primeros conceptos de una nueva ciencia, la Mecánica de Suelos. Ciencia que ve la luz en 1925 con la publicación de su libro Erdbaumechanik auf bodenphysikalischer Grundlage. Rápidamente otras figuras empezaron a hacer sus contribuciones científicas y de divulgación, como es el caso del ingeniero austriaco-americano Arthur Casagrande (1902), cuya iniciativa de organizar el primer Congreso Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones proporcionó el altavoz que necesitaba esa nueva ciencia para su difusión. Al mismo tiempo, más figuras internacionales se fueron uniendo a este período de grandes avances e innovadores puntos de vista. Figuras como Alec Skempton (1914) en el Reino Unido, Ralph Peck (1912) en los Estados Unidos o Laurits Bjerrum (1918) en Noruega sobresalieron entre los grandes de la época. Esta tesis investiga las vidas de estos geotécnicos, artífices de múltiples avances científicos de la nueva ciencia denominada Mecánica de Suelos. Todas estas grandes figuras de la geotecnia fueron presidentes, en distintos periodos, de la Sociedad Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones. Se deja constancia de ello en las biografías que han sido elaboradas a partir de fuentes de variada procedencia y de los datos cruzados encontrados sobre estos extraordinarios geotécnicos. Así, las biografías de Terzaghi, Casagrande, Skempton, Peck y Bjerrum contribuyen no solo a su conocimiento individual sino que constituyen conjuntamente un punto de vista privilegiado para la comprensión de los acontecimientos vividos por la Mecánica de Suelos en el segundo tercio del siglo XX, extendiéndose en algunos casos hasta los albores del siglo XXI. Las aportaciones científicas de estos geotécnicos encuentran también su lugar en la parte técnica de esta tesis, en la que sus contribuciones individuales iniciales que configuran los distintos capítulos conservan sus puntos de vista originales, lo que permite tener una visión de los principios de la Mecánica de Suelos desde su mismo origen. On reading several articles in the journal, Revista de Obras Públicas (Jiménez Salas, 1945), one recalls such leading figures as Coulomb (1773), Poncelet (1840), Rankine (1856), Culmann (1866), Mohr (1871) and Boussinesq (1876) among many others, who created the basis of scientific knowledge that would make the complicated task of construction progressively easier. However, their advances were approximations which suffered considerable discrepancies when faced with the behaviour of the forces of nature. There came a time when such discrepancies became all too evident. Substantial soil settlements when constructing modern buildings, embankment dam failures and grave landslides, during the construction of the Panama Canal for example, led the American Society of Civil Engineers (ASCE) to form a committee in order to analyse construction practices of the time. Similar incidents had taken place in Europe, for example with railway slides, which in the case of Sweden, had resulted in heavy losses in both materials and human lives. During the practice of his career, the Austrian-American engineer Karl Terzaghi (1883) had encountered the many challenges posed by the forces of nature and the lack of knowledge at his disposal with which to overcome them. Terzaghi first sought a solution in geology only to discover that this lacked the necessary accuracy for the practice of engineering. He therefore threw himself into tireless research based on the experimental method. He began in 1917 on limited means but soon managed to develop several tests, which would allow him to establish the basic fundamentals of a new science; Soil Mechanics, a science which first saw the light of day on the publication of Terzaghi’s book, Erdbaumechanik auf bodenphysikalischer Grundlage. Other figures were quick to make their own scientific contributions. Such was the case of Austrian-American engineer, Arthur Casagrande (1902), whose initiative to organize the first International Congress of Soil Mechanics and Foundation Engineering provided the springboard that this science needed. At the same time, other international figures were becoming involved in this period of great advances and innovative concepts. Figures including the likes of Alec Skempton (1914) in the United Kingdom, Ralph Peck (1912) in the United States, and Laurits Bjerrum (1918) in Norway stood out amongst the greatest of their time. This thesis investigates the lives of these geotechnical engineers to whom we are indebted for a great many scientific advances in this new science known as Soil Mechanics. Moreover, each of these eminent figures held the presidency of the International Society of Soil Mechanics and Foundation Engineering, record of which can be found in their biographies, drawn from diverse sources, and by crosschecking and referencing all the available information on these extraordinary geotechnical engineers. Thus, the biographies of Terzaghi, Casagrande, Skempton, Peck and Bjerrum not only serve to provide knowledge on the individual, but moreover, as a collective, they present us with an exceptional insight into the important developments which took place in Soil Mechanics in the second third of the 20th century, and indeed, in some cases, up to the dawn of the 21st. The scientific contributions of these geotechnical engineers also find their place in the technical part of this thesis in which the initial individual contributions which make up several chapters retain their original approaches allowing us a view of the principles of Soil Mechanics from its very beginnings.
Resumo:
Esta tesis analiza los criterios con que fueron proyectadas y construidas las estructuras de hormigón hasta 1973, fecha coincidente con la Instrucción EH-73, que en contenido, formato y planteamiento, consagró la utilización de los criterios modernamente utilizados hasta ahora. Es heredera, además, de las CEB 1970. Esos años marcan el cambio de planteamiento desde la Teoría Clásica hacia los Estados Límite. Los objetivos perseguidos son, sintéticamente: 1) Cubrir un vacío patente en el estudio de la evolución del conocimiento. Hay tratados sobre la historia del hormigón que cubren de manera muy completa el relato de personajes y realizaciones, pero no, al menos de manera suficiente, la evolución del conocimiento. 2) Servir de ayuda a los técnicos de hoy para entender configuraciones estructurales, geometrías, disposiciones de armado, formatos de seguridad, etc, utilizados en el pasado, lo que servirá para la redacción más fundada de dictámenes preliminares sobre estructuras existentes. 3) Ser referencia para la realización de estudios de valoración de la capacidad resistente de construcciones existentes, constituyendo la base de un documento pre-normativo orientado en esa dirección. En efecto, esta tesis pretende ser una ayuda para los ingenieros de hoy que se enfrentan a la necesidad de conservar y reparar estructuras de hormigón armado que forman parte del patrimonio heredado. La gran mayoría de las estructuras, fueron construidas hace más de 40 años, por lo que es preciso conocer los criterios que marcaron su diseño, su cálculo y su construcción. Pretende determinar cuáles eran los límites de agotamiento y por tanto de seguridad, de estructuras dimensionadas con criterios de antaño, analizadas por la metodología de cálculo actual. De este modo, se podrá determinar el resguardo existente “real” de las estructuras dimensionadas y calculadas con criterios “distintos” a los actuales. Conocer el comportamiento de las estructuras construidas con criterios de la Teoría Clásica, según los criterios actuales, permitirá al ingeniero de hoy tratar de la forma más adecuada el abanico de necesidades que se puedan presentar en una estructura existente. Este trabajo se centra en la evolución del conocimiento por lo que no se encuentran incluidos los procesos constructivos. En lo relativo a los criterios de proyecto, hasta mediados del siglo XX, éstos se veían muy influidos por los ensayos y trabajos de autor consiguientes, en los que se basaban los reglamentos de algunos países. Era el caso del reglamento prusiano de 1904, de la Orden Circular francesa de 1906, del Congreso de Lieja de 1930. A partir de la segunda mitad del siglo XX, destacan las aportaciones de ingenieros españoles como es el caso de Alfredo Páez Balaca, Eduardo Torroja y Pedro Jiménez Montoya, entre otros, que permitieron el avance de los criterios de cálculo y de seguridad de las estructuras de hormigón, hasta los que se conocen hoy. El criterio rector del proyecto de las estructuras de hormigón se fundó, como es sabido, en los postulados de la Teoría Clásica, en particular en el “momento crítico”, aquel para el que hormigón y acero alcanzan sus tensiones admisibles y, por tanto, asegura el máximo aprovechamiento de los materiales y sin pretenderlo conscientemente, la máxima ductilidad. Si el momento solicitante es mayor que el crítico, se dispone de armadura en compresión. Tras el estudio de muchas de las estructuras existentes de la época por el autor de esta tesis, incluyendo entre ellas las Colecciones Oficiales de Puentes de Juan Manuel de Zafra, Eugenio Ribera y Carlos Fernández Casado, se concluye que la definición geométrica de las mismas no se corresponde exactamente con la resultante del momento crítico, dado que como ahora resultaba necesario armonizar los criterios de armado a nivel sección con la organización de la ferralla a lo largo de los diferentes elementos estructurales. Los parámetros de cálculo, resistencias de los materiales y formatos de seguridad, fueron evolucionando con los años. Se fueron conociendo mejor las prestaciones de los materiales, se fue enriqueciendo la experiencia de los propios procesos constructivos y, en menor medida, de las acciones solicitantes y, consiguientemente, acotándose las incertidumbres asociadas lo cual permitió ir ajustando los coeficientes de seguridad a emplear en el cálculo. Por ejemplo, para el hormigón se empleaba un coeficiente de seguridad igual a 4 a finales del siglo XIX, que evolucionó a 3,57 tras la publicación de la Orden Circular francesa de 1906, y a 3, tras la Instrucción española de 1939. En el caso del acero, al ser un material bastante más conocido por cuanto se había utilizado muchísimo previamente, el coeficiente de seguridad permaneció casi constante a lo largo de los años, con un valor igual a 2. Otra de las causas de la evolución de los parámetros de cálculo fue el mejor conocimiento del comportamiento de las estructuras merced a la vasta tarea de planificación y ejecución de ensayos, con los estudios teóricos consiguientes, realizados por numerosos autores, principalmente austríacos y alemanes, pero también norteamericanos y franceses. En cuanto a los criterios de cálculo, puede sorprender al técnico de hoy el conocimiento que tenían del comportamiento del hormigón desde los primeros años del empleo del mismo. Sabían del comportamiento no lineal del hormigón, pero limitaban su trabajo a un rango de tensióndeformación lineal porque eso aseguraba una previsión del comportamiento estructural conforme a las hipótesis de la Elasticidad Lineal y de la Resistencia de Materiales, muy bien conocidas a principios del s. XX (no así sucedía con la teoría de la Plasticidad, aún sin formular, aunque estaba implícita en los planteamientos algunos ingenieros especializados en estructuras de fábrica (piedra o ladrillo) y metálicas. Además, eso permitía independizar un tanto el proyecto de los valores de las resistencias reales de los materiales, lo que liberaba de la necesidad de llevar a cabo ensayos que, en la práctica, apenas se podían hacer debido a la escasez de los laboratorios. Tampoco disponían de programas informáticos ni de ninguna de las facilidades de las que hoy se tienen, que les permitiera hacer trabajar al hormigón en un rango no lineal. Así, sabia y prudentemente, limitaban las tensiones y deformaciones del material a un rango conocido. El modus operandi seguido para la elaboración de esta tesis, ha sido el siguiente: -Estudio documental: se han estudiado documentos de autor, recomendaciones y normativa generada en este ámbito, tanto en España como con carácter internacional, de manera sistemática con arreglo al índice del documento. En este proceso, se han detectado lagunas del conocimiento (y su afección a la seguridad estructural, en su caso) y se han identificado las diferencias con los procedimientos de hoy. También ha sido necesario adaptar la notación y terminología de la época a los criterios actuales, lo que ha supuesto una dificultad añadida. -Desarrollo del documento: A partir del estudio previo se han ido desarrollando los siguientes documentos, que conforman el contenido de la tesis: o Personajes e instituciones relevantes por sus aportaciones al conocimiento de las estructuras de hormigón (investigación, normativa, docencia). o Caracterización de las propiedades mecánicas de los materiales (hormigón y armaduras), en relación a sus resistencias, diagramas tensión-deformación, módulos de deformación, diagramas momento-curvatura, etc. Se incluye aquí la caracterización clásica de los hormigones, la geometría y naturaleza de las armaduras, etc. o Formatos de seguridad: Se trata de un complejo capítulo del que se pretende extraer la información suficiente que permita a los técnicos de hoy entender los criterios utilizados entonces y compararlos con los actuales. o Estudio de secciones y piezas sometidas a tensiones normales y tangenciales: Se trata de presentar la evolución en el tratamiento de la flexión simple y compuesta, del cortante, del rasante, torsión, etc. Se tratan también en esta parte del estudio aspectos que, no siendo de preocupación directa de los técnicos de antaño (fisuración y deformaciones), tienen hoy mayor importancia frente a cambios de usos y condiciones de durabilidad. o Detalles de armado: Incluye el tratamiento de la adherencia, el anclaje, el solapo de barras, el corte de barras, las disposiciones de armado en función de la geometría de las piezas y sus solicitaciones, etc. Es un capítulo de importancia obvia para los técnicos de hoy. Se incluye un anejo con las referencias más significativas a los estudios experimentales en que se basaron las propuestas que han marcado hito en la evolución del conocimiento. Finalmente, junto a las conclusiones más importantes, se enuncian las propuestas de estudios futuros. This thesis analyzes the criteria with which structures of reinforced concrete have been designed and constructed prior to 1973. Initially, the year 1970 was chosen as starting point, coinciding with the CEB recommendations, but with the development of the thesis it was decided that 1973 was the better option, coinciding with the Spanish regulations of 1973, whose content, format and description introduced the current criteria. The studied period includes the Classic Theory. The intended goals of this thesis are: 1) To cover a clear gap in the study of evolution of knowledge about reinforced concrete. The concept and accomplishments achieved by reinforced concrete itself has been treated in a very complete way by the main researchers in this area, but not the evolution of knowledge in this subject area. 2) To help the engineers understand structural configurations, geometries, dispositions of steel, safety formats etc, that will serve as preliminary judgments by experts on existing structures. To be a reference to the existing studies about the valuation of resistant capacity of existing constructions, constituting a basic study of a pre-regulation document. This thesis intends to be a help for the current generation of engineers who need to preserve and repair reinforced concrete structures that have existed for a significant number of years. Most of these structures in question were constructed more than 40 years ago, and it is necessary to know the criteria that influenced their design, the calculation and the construction. This thesis intends to determine the safety limits of the old structures and analyze them in the context of the current regulations and their methodology. Thus, it will then be possible to determine the safety of these structures, after being measured and calculated with the current criteria. This will allow the engineers to optimize the treatment of such a structure. This work considers the evolution of the knowledge, so constructive methods are not included. Related to the design criteria, there existed until middle of the 20th century a large number of diverse European tests and regulations, such as the Prussian norm of 1904, the Circular French Order of 1906, the Congress of Liège of 1930, as well as individual engineers’ own notes and criteria which incorporated the results of their own tests. From the second half of the 20th century, the contributions of Spanish engineers as Alfredo Páez Balaca, Eduardo Torroja and Pedro Jiménez Montoya, among others, were significant and this allowed the advancement of the criteria of the calculation of safety standards of concrete structures, many of which still exist to the present day. The design and calculation of reinforced concrete structures by the Classic Theory, was based on the ‘Critical Bending Moment’, when concrete and steel achieve their admissible tensions, that allows the best employment of materials and the best ductility. If the bending moment is major than the critical bending moment, will be necessary to introduce compression steel. After the study of the designs of many existing structures of that time by the author of this thesis, including the Historical Collections of Juan Manuel de Zafra, Eugenio Ribera and Carlos Fernandez Casado, the conclusion is that the geometric definition of the structures does not correspond exactly with the critical bending moment inherent in the structures. The parameters of these calculations changed throughout the years. The principal reason that can be outlined is that the materials were improving gradually and the number of calculated uncertainties were decreasing, thus allowing the reduction of the safety coefficients to use in the calculation. For example, concrete used a coefficient of 4 towards the end of the 19th century, which evolved to 3,57 after the publication of the Circular French Order of 1906, and then to 3 after the Spanish Instruction of 1939. In the case of the steel, a much more consistent material, the safety coefficient remained almost constant throughout the years, with a value of 2. Other reasons related to the evolution of the calculation parameters were that the tests and research undertaken by an ever-increasing number of engineers then allowed a more complete knowledge of the behavior of reinforced concrete. What is surprising is the extent of knowledge that existed about the behavior of the concrete from the outset. Engineers from the early years knew that the behavior of the concrete was non-linear, but they limited the work to a linear tension-deformation range. This was due to the difficulties of work in a non-linear range, because they did not have laboratories to test concrete, or facilities such as computers with appropriate software, something unthinkable today. These were the main reasons engineers of previous generations limited the tensions and deformations of a particular material to a known range. The modus operandi followed for the development of this thesis is the following one: -Document study: engineers’ documents, recommendations and regulations generated in this area, both from Spain or overseas, have been studied in a systematic way in accordance with the index of the document. In this process, a lack of knowledge has been detected concerning structural safety, and differences to current procedures have been identified and noted. Also, it has been necessary to adapt the notation and terminology of the Classic Theory to the current criteria, which has imposed an additional difficulty. -Development of the thesis: starting from the basic study, the next chapters of this thesis have been developed and expounded upon: o People and relevant institutions for their contribution to the knowledge about reinforced concrete structures (investigation, regulation, teaching). Determination of the mechanical properties of the materials (concrete and steel), in relation to their resistances, tension-deformation diagrams, modules of deformation, moment-curvature diagrams, etc. Included are the classic characterizations of concrete, the geometry and nature of the steel, etc. Safety formats: this is a very difficult chapter from which it is intended to provide enough information that will then allow the present day engineer to understand the criteria used in the Classic Theory and then to compare them with the current theories. Study of sections and pieces subjected to normal and tangential tensions: it intends to demonstrate the evolution in the treatment of the simple and complex flexion, shear, etc. Other aspects examined include aspects that were not very important in the Classic Theory but currently are, such as deformation and fissures. o Details of reinforcement: it includes the treatment of the adherence, the anchorage, the lapel of bars, the cut of bars, the dispositions of reinforcement depending on the geometry of the pieces and the solicitations, etc. It is a chapter of obvious importance for current engineers. The document will include an annex with the most references to the most significant experimental studies on which were based the proposals that have become a milestone in the evolution of knowledge in this area. Finally, there will be included conclusions and suggestions of future studies. A deep study of the documentation and researchers of that time has been done, juxtaposing their criteria and results with those considered relevant today, and giving a comparison between the resultant safety standards according to the Classic Theory criteria and currently used criteria. This thesis fundamentally intends to be a guide for engineers who have to treat or repair a structure constructed according to the Classic Theory criteria.