812 resultados para Employee involvement
Resumo:
A complexidade crescente no ambiente de trabalho tem exigido capacidade de adaptação dos empregados, com papéis exigindo maior flexibilidade e criatividade para superar os desafios que se apresentam. Ciclos de vida de produtos cada vez menores num mercado muito agressivo têm acarretado enormes pressões nos empregados, com efeitos colaterais na saúde, como estresse e doenças psicossomáticas. O tratamento de doenças, embora relevante para minimizar o sofrimento humano, não tem sido suficiente para dar respostas desejadas neste ambiente de trabalho numa concepção de saúde que abranja o bem-estar e que permita aos empregados enfrentar melhor os desafios que se apresentam. O campo da psicologia positiva, voltada ao estudo dos fatores que propiciam o florescimento das pessoas, permite às organizações, gestores e empregados ampliar o leque de alternativas possíveis para melhorar a saúde das pessoas, com reflexos positivos para as organizações. O objetivo deste estudo visou a confirmar se os valores organizacionais, percepção de suporte organizacional e percepções de justiça (distributiva e de procedimentos) são antecedentes de bem-estar no trabalho, um construto composto das variáveis de satisfação no trabalho, envolvimento com o trabalho, e comprometimento organizacional afetivo. A amostra envolveu 404 trabalhadores atuando em empresas na região da Grande São Paulo, sendo 209 do sexo masculino e 193 do sexo feminino. Dividiu-se a amostra a partir de dois agrupamentos de empresas, o setor financeiro (compreendendo uma empresa com 243 respondentes) e o setor não financeiro (compreendendo 13 empresas com um total de 161 respondentes). Como instrumento para coleta de dados utilizou-se de um questionário composto de sete escalas, abrangendo as três variáveis de bem-estar no trabalho e as quatro variáveis independentes estudadas como seus antecedentes. Os resultados deste estudo, nos dois setores estudados, confirmaram que a percepção de suporte organizacional e a percepção de justiça distributiva acarretam maior satisfação no trabalho. A justiça de procedimentos também mostrou capacidade preditiva de satisfação no trabalho para o setor financeiro. O valor organizacional autonomia confirmou-se como antecedente de envolvimento com o trabalho nos dois setores. O valor organizacional realização e a percepção de justiça de procedimentos posicionaram-se como antecedentes de comprometimento organizacional afetivo para os setores não financeiro e financeiro, respectivamente. O valor organizacional preocupação com a coletividade e a percepção de suporte organizacional mostraram capacidade preditiva de comprometimento organizacional afetivo para os setores financeiro e não financeiro, respectivamente. Os resultados revelam que se promove o bem-estar no trabalho quando, nas organizações, se adotam políticas e práticas que dêem suporte e tratamento digno aos empregados, reforçando valores organizacionais que promovam um ambiente propício à inovação e à criatividade, com maior autonomia, onde os gestores valorizam a competência e o sucesso dos trabalhadores, e onde se predomina a honestidade e a sinceridade nas relações entre as pessoas e a organização. Os empregados tenderão a desenvolver transações típicas das trocas sociais, investindo seus esforços para a organização, com base na confiança e na lealdade.
Resumo:
A complexidade crescente no ambiente de trabalho tem exigido capacidade de adaptação dos empregados, com papéis exigindo maior flexibilidade e criatividade para superar os desafios que se apresentam. Ciclos de vida de produtos cada vez menores num mercado muito agressivo têm acarretado enormes pressões nos empregados, com efeitos colaterais na saúde, como estresse e doenças psicossomáticas. O tratamento de doenças, embora relevante para minimizar o sofrimento humano, não tem sido suficiente para dar respostas desejadas neste ambiente de trabalho numa concepção de saúde que abranja o bem-estar e que permita aos empregados enfrentar melhor os desafios que se apresentam. O campo da psicologia positiva, voltada ao estudo dos fatores que propiciam o florescimento das pessoas, permite às organizações, gestores e empregados ampliar o leque de alternativas possíveis para melhorar a saúde das pessoas, com reflexos positivos para as organizações. O objetivo deste estudo visou a confirmar se os valores organizacionais, percepção de suporte organizacional e percepções de justiça (distributiva e de procedimentos) são antecedentes de bem-estar no trabalho, um construto composto das variáveis de satisfação no trabalho, envolvimento com o trabalho, e comprometimento organizacional afetivo. A amostra envolveu 404 trabalhadores atuando em empresas na região da Grande São Paulo, sendo 209 do sexo masculino e 193 do sexo feminino. Dividiu-se a amostra a partir de dois agrupamentos de empresas, o setor financeiro (compreendendo uma empresa com 243 respondentes) e o setor não financeiro (compreendendo 13 empresas com um total de 161 respondentes). Como instrumento para coleta de dados utilizou-se de um questionário composto de sete escalas, abrangendo as três variáveis de bem-estar no trabalho e as quatro variáveis independentes estudadas como seus antecedentes. Os resultados deste estudo, nos dois setores estudados, confirmaram que a percepção de suporte organizacional e a percepção de justiça distributiva acarretam maior satisfação no trabalho. A justiça de procedimentos também mostrou capacidade preditiva de satisfação no trabalho para o setor financeiro. O valor organizacional autonomia confirmou-se como antecedente de envolvimento com o trabalho nos dois setores. O valor organizacional realização e a percepção de justiça de procedimentos posicionaram-se como antecedentes de comprometimento organizacional afetivo para os setores não financeiro e financeiro, respectivamente. O valor organizacional preocupação com a coletividade e a percepção de suporte organizacional mostraram capacidade preditiva de comprometimento organizacional afetivo para os setores financeiro e não financeiro, respectivamente. Os resultados revelam que se promove o bem-estar no trabalho quando, nas organizações, se adotam políticas e práticas que dêem suporte e tratamento digno aos empregados, reforçando valores organizacionais que promovam um ambiente propício à inovação e à criatividade, com maior autonomia, onde os gestores valorizam a competência e o sucesso dos trabalhadores, e onde se predomina a honestidade e a sinceridade nas relações entre as pessoas e a organização. Os empregados tenderão a desenvolver transações típicas das trocas sociais, investindo seus esforços para a organização, com base na confiança e na lealdade.
Resumo:
The phosphatidylinositol 3-kinase (PI3K)-signaling pathway has emerged as an important component of cytokine-mediated survival of hemopoietic cells. Recently, the protein kinase PKB/akt (referred to here as PKB) has been identified as a downstream target of PI3K necessary for survival. PKB has also been implicated in the phosphorylation of Bad, potentially linking the survival effects of cytokines with the Bcl-2 family. We have shown that granulocyte/macrophage colony-stimulating factor (GM-CSF) maintains survival in the absence of PI3K activity, and we now show that when PKB activation is also completely blocked, GM-CSF is still able to stimulate phosphorylation of Bad. Interleukin 3 (IL-3), on the other hand, requires PI3K for survival, and blocking PI3K partially inhibited Bad phosphorylation. IL-4, unique among the cytokines in that it lacks the ability to activate the p21ras–mitogen-activated protein kinase (MAPK) cascade, was found to activate PKB and promote cell survival, but it did not stimulate Bad phosphorylation. Finally, although our data suggest that the MAPK pathway is not required for inhibition of apoptosis, we provide evidence that phosphorylation of Bad may be occurring via a MAPK/ERK kinase (MEK)-dependent pathway. Together, these results demonstrate that although PI3K may contribute to phosphorylation of Bad in some instances, there is at least one other PI3K-independent pathway involved, possibly via activation of MEK. Our data also suggest that although phosphorylation of Bad may be one means by which cytokines can inhibit apoptosis, it may be neither sufficient nor necessary for the survival effect.
Resumo:
This work was supported in Taipei by Institute of Biomedical Sciences, Academia Sinica and grants from the Ministry of Science and Technology, Taiwan (NSC100-2321-B-001-018, NSC102-2321-B-001-056, NSC102-2320-B-001-021-MY3, and MOST104-2325-B- 001-011) and in Aberdeen, by the Institute of Medical Sciences, University of Aberdeen, UK. We thank Dr David J. Anderson and Dr Yoshihiro Yoshihara for providing plasmids containing cDNA of eGFP-f and WGA, respectively. Dr John N. Wood, Dr Bai-Chuang Shyu and Dr Yu-Ting Yan for providing transgenic lines including Nav1.8-Cre, Parvalbumin-Cre, ROSA-Gt26 reporter and CAG-STOPfloxed-GFP reporter mice. Also we thank Dr Silvia Arber for offering Parvalbumin-Cre-specific genotyping primer sequence, Dr Philip LeDuc for critical reading of the manuscript, and the Transgenic Core Facility of Academia Sinica for the help on the generation of the 2 Asic3 mutant mice, as well as Dr Sin-Jhong Cheng of NPAS for technique support on electrophysiology
Resumo:
Cytochrome P450s constitute a superfamily of genes encoding mostly microsomal hemoproteins that play a dominant role in the metabolism of a wide variety of both endogenous and foreign compounds. In insects, xenobiotic metabolism (i.e., metabolism of insecticides and toxic natural plant compounds) is known to involve members of the CYP6 family of cytochrome P450s. Use of a 3′ RACE (rapid amplification of cDNA ends) strategy with a degenerate primer based on the conserved cytochrome P450 heme-binding decapeptide loop resulted in the amplification of four cDNA sequences representing another family of cytochrome P450 genes (CYP28) from two species of isoquinoline alkaloid-resistant Drosophila and the cosmopolitan species Drosophila hydei. The CYP28 family forms a monophyletic clade with strong regional homologies to the vertebrate CYP3 family and the insect CYP6 family (both of which are involved in xenobiotic metabolism) and to the insect CYP9 family (of unknown function). Induction of mRNA levels for three of the CYP28 cytochrome P450s by toxic host-plant allelochemicals (up to 11.5-fold) and phenobarbital (up to 49-fold) corroborates previous in vitro metabolism studies and suggests a potentially important role for the CYP28 family in determining patterns of insect–host-plant relationships through xenobiotic detoxification.
Resumo:
Several scaffold proteins for neurotransmitter receptors have been identified as candidates for receptor targeting. However, the molecular mechanism underlying such receptor clustering and targeting to postsynaptic specializations remains unknown. PSD-Zip45 (also named Homer 1c/vesl-1L) consists of the NH2 terminus containing the enabled/VASP homology 1 domain and the COOH terminus containing the leucine zipper. Here, we demonstrate immunohistochemically that metabotropic glutamate receptor 1α (mGluR1α) and PSD-Zip45/Homer 1c are colocalized to synapses in the cerebellar molecular layer but not in the hippocampus. In cultured hippocampal neurons, PSD-Zip45/Homer1c and N-methyl-d-aspartate receptors are preferentially colocalized to dendritic spines. Cotransfection of mGluR1α or mGluR5 and PSD-Zip45/Homer 1c into COS-7 cells results in mGluR clustering induced by PSD-Zip45/Homer 1c. An in vitro multimerization assay shows that the extreme COOH-terminal leucine zipper is involved in self-multimerization of PSD-Zip45/Homer 1c. A clustering assay of mGluRs in COS-7 cells also reveals a critical role of this leucine-zipper motif of PSD-Zip45/Homer 1c in mGluR clustering. These results suggest that the leucine zipper of subsynaptic scaffold protein is a candidate motif involved in neurotransmitter receptor clustering at the central synapse.
Resumo:
Helicobacter pylori, present in half of the world’s population, is a very successful pathogen. It can survive for decades in the human stomach with few obvious consequences to the host. However, it is also the cause of gastric diseases ranging from gastritis to ulcers to gastric cancer and has been classified a type 1 carcinogen by the World Health Organization. We have previously shown that phosphorylation of a 145-kDa protein and activation of signal transduction pathways are associated with the attachment of H. pylori to gastric cells. Here we identify the 145-kDa protein as the H. pylori CagA protein. We also show that CagA is necessary to induce a growth-factor-like phenotype (hummingbird) in host gastric cells similar to that induced by hepatocyte growth factor (HGF). Additionally, we identify a second cellular phenotype induced after attachment by H. pylori, which we call SFA (stress fiber associated). SFA is CagA independent and is produced by type I and type II H. pylori.
Resumo:
Tumor necrosis factor (TNF)-induced apoptosis is mediated by caspases, which are cysteine proteases related to interleukin 1β-converting enzyme. We report here that TNF-induced activation of caspases results in the cleavage and activation of cytosolic phospholipase A2 (cPLA2) and that activated cPLA2 contributes to apoptosis. Inhibition of caspases by expression of a cowpox virus-derived inhibitor, CrmA, or by a specific tetrapeptide inhibitor of CPP32/caspase-3, acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), inhibited TNF-induced activation of cPLA2 and apoptosis. TNF-induced activation of cPLA2 was accompanied by a cleavage of the 100-kDa cPLA2 to a 70-kDa proteolytic fragment. This cleavage was inhibited by Ac-DEVD-CHO in a similar manner as that of poly(ADP)ribose polymerase, a known substrate of CPP32/caspase-3. Interestingly, specific inhibition of cPLA2 enzyme activity by arachidonyl trifluoromethylketone (AACOCF3) partially inhibited TNF-induced apoptosis without inhibition of caspase activity. Thus, our results suggest a novel caspase-dependent activation pathway for cPLA2 during apoptosis and identify cPLA2 as a mediator of TNF-induced cell death acting downstream of caspases.
Resumo:
High-efficiency entry of the enteropathogenic bacterium Yersinia pseudotuberculosis into nonphagocytic cells is mediated by the bacterial outer membrane protein invasin. Invasin-mediated uptake requires high affinity binding of invasin to multiple β1 chain integrin receptors on the host eukaryotic cell. Previous studies using inhibitors have indicated that high-efficiency uptake requires tyrosine kinase activity. In this paper we demonstrate a requirement for focal adhesion kinase (FAK) for invasin-mediated uptake. Overexpression of a dominant interfering form of FAK reduced the amount of bacterial entry. Specifically, the autophosphorylation site of FAK, which is a reported site of c-Src kinase binding, is required for bacterial internalization, as overexpression of a derivative lacking the autophosphorylation site had a dominant interfering effect as well. Cultured cells expressing interfering variants of Src kinase also showed reduced bacterial uptake, demonstrating the involvement of a Src-family kinase in invasin-promoted uptake.
Resumo:
Vaccinia uses actin-based motility for virion movement in host cells, but the specific protein components have yet to be defined. A cardinal feature of Listeria and Shigella actin-based motility is the involvement of vasodilator-stimulated phosphoprotein (VASP). This essential adapter recognizes and binds to actin-based motility 1 (ABM-1) consensus sequences [(D/E)FPPPPX(D/E), X = P or T] contained in Listeria ActA and in the p90 host-cell vinculin fragment generated by Shigella infection. VASP, in turn, provides the ABM-2 sequences [XPPPPP, X = G, P, L, S, A] for binding profilin, an actin-regulatory protein that stimulates actin filament assembly. Immunolocalization using rabbit anti-VASP antibody revealed that VASP concentrates behind motile virions in HeLa cells. Profilin was also present in these actin-rich rocket tails, and microinjection of 10 μM (intracellular) ABM-2 peptide (GPPPPP)3 blocked vaccinia actin-based motility. Vinculin did not colocalize with VASP on motile virions and remained in focal adhesion contacts; however, another ABM-1-containing host protein, zyxin, was concentrated at the rear of motile virions. We also examined time-dependent changes in the location of these cytoskeletal proteins during vaccinia infection. VASP and zyxin were redistributed dramatically several hours before the formation of actin rocket tails, concentrating in the viral factories of the perinuclear cytoplasm. Our findings underscore the universal involvement of ABM-1 and ABM-2 docking sites in actin-based motility of Listeria, Shigella, and now vaccinia.
Resumo:
Ors-binding activity (OBA) was previously semipurified from HeLa cells through its ability to interact specifically with the 186-basepair (bp) minimal replication origin of ors8 and support ors8 replication in vitro. Here, through competition band-shift analyses, using as competitors various subfragments of the 186-bp minimal ori, we identified an internal region of 59 bp that competed for OBA binding as efficiently as the full 186-bp fragment. The 59-bp fragment has homology to a 36-bp sequence (A3/4) generated by comparing various mammalian replication origins, including the ors. A3/4 is, by itself, capable of competing most efficiently for OBA binding to the 186-bp fragment. Band-shift elution of the A3/4–OBA complex, followed by Southwestern analysis using the A3/4 sequence as probe, revealed a major band of ∼92 kDa involved in the DNA binding activity of OBA. Microsequencing analysis revealed that the 92-kDa polypeptide is identical to the 86-kDa subunit of human Ku antigen. The affinity-purified OBA fraction obtained using an A3/4 affinity column also contained the 70-kDa subunit of Ku and the DNA-dependent protein kinase catalytic subunit. In vitro DNA replication experiments in the presence of A3/4 oligonucleotide or anti-Ku70 and anti-Ku86 antibodies implicate Ku in mammalian DNA replication.
Resumo:
Pseudomonas exotoxin (PE) is a cytotoxin which, after endocytosis, is delivered to the cytosol where it inactivates protein synthesis. Using diaminobenzidine cytochemistry, we found over 94% of internalized PE in transferrin (Tf) -positive endosomes of lymphocytes. When PE translocation was examined in a cell-free assay using purified endocytic vesicles, more than 40% of endosomal 125I-labeled PE was transported after 2 h at 37°C, whereas a toxin inactivated by point mutation in its translocation domain was not translocated. Sorting of endosomes did not allow cell-free PE translocation, whereas active PE transmembrane transport was observed after > 10 min of endocytosis when PE and fluorescent-Tf were localized by confocal immunofluorescence microscopy within a rab5-positive and rab4- and rab7-negative recycling compartment in the pericentriolar region of the cell. Accordingly, when PE delivery to this structure was inhibited using a 20°C endocytosis temperature, subsequent translocation from purified endosomes was impaired. Translocation was also inhibited when endosomes were obtained from cells labeled with PE in the presence of brefeldin A, which caused fusion of translocation-competent recycling endosomes with translocation-incompetent sorting elements. No PE processing was observed in lymphocyte endosomes, the full-sized toxin was translocated and recovered in an enzymatically active form. ATP hydrolysis was found to directly provide the energy required for PE translocation. Inhibitors of endosome acidification (weak bases, protonophores, or bafilomycin A1) when added to the assay did not significantly affect 125I-labeled PE translocation, demonstrating that this transport is independent of the endosome-cytosol pH gradient. Nevertheless, when 125I-labeled PE endocytosis was performed in the presence of one of these molecules, translocation from endosomes was strongly inhibited, indicating that exposure to acidic pH is a prerequisite for PE membrane traversal. When applied during endocytosis, treatments that protect cells against PE intoxication (low temperatures, inhibitors of endosome acidification, and brefeldin A) impaired 125I-labeled PE translocation from purified endosomes. We conclude that PE translocation from a late receptor recycling compartment is implicated in the lymphocyte intoxication procedure.
Resumo:
Monoclonal antibodies raised against axonemal proteins of sea urchin spermatozoa have been used to study regulatory mechanisms involved in flagellar motility. Here, we report that one of these antibodies, monoclonal antibody D-316, has an unusual perturbating effect on the motility of sea urchin sperm models; it does not affect the beat frequency, the amplitude of beating or the percentage of motile sperm models, but instead promotes a marked transformation of the flagellar beating pattern which changes from a two-dimensional to a three-dimensional type of movement. On immunoblots of axonemal proteins separated by SDS-PAGE, D-316 recognized a single polypeptide of 90 kDa. This protein was purified following its extraction by exposure of axonemes to a brief heat treatment at 40°C. The protein copurified and coimmunoprecipitated with proteins of 43 and 34 kDa, suggesting that it exists as a complex in its native form. Using D-316 as a probe, a full-length cDNA clone encoding the 90-kDa protein was obtained from a sea urchin cDNA library. The sequence predicts a highly acidic (pI = 4.0) protein of 552 amino acids with a mass of 62,720 Da (p63). Comparison with protein sequences in databases indicated that the protein is related to radial spoke proteins 4 and 6 (RSP4 and RSP6) of Chlamydomonas reinhardtii, which share 37% and 25% similarity, respectively, with p63. However, the sea urchin protein possesses structural features distinct from RSP4 and RSP6, such as the presence of three major acidic stretches which contains 25, 17, and 12 aspartate and glutamate residues of 34-, 22-, and 14-amino acid long stretches, respectively, that are predicted to form α-helical coiled-coil secondary structures. These results suggest a major role for p63 in the maintenance of a planar form of sperm flagellar beating and provide new tools to study the function of radial spoke heads in more evolved species.
Resumo:
Cell–cell interactions, mediated by members of the cadherin family of Ca2+-dependent adhesion molecules, play key roles in morphogenetic processes as well as in the transduction of long-range growth and differentiation signals. In muscle differentiation cell adhesion is involved in both early stages of myogenic induction and in later stages of myoblast interaction and fusion. In this study we have explored the involvement of a specific cadherin, namely N-cadherin, in myogenic differentiation. For that purpose we have treated different established lines of cultured myoblasts with beads coated with N-cadherin–specific ligands, including a recombinant N-cadherin extracellular domain, and anti-N-cadherin antibodies. Immunofluorescent labeling for cadherins and catenins indicated that treatment with the cadherin-reactive beads for several hours enhances the assembly of cell–cell adherens-type junctions. Moreover, immunofluorescence and immunoblotting analyses indicated that treatment with the beads for 12–24 h induces myogenin expression and growth arrest, which are largely independent of cell plating density. Upon longer incubation with the beads (2–3 d) a major facilitation in the expression of several muscle-specific sarcomeric proteins and in cell fusion into myotubes was observed. These results suggest that surface clustering or immobilization of N-cadherin can directly trigger signaling events, which promote the activation of a myogenic differentiation program.
Resumo:
Cytoplasmic dynein is one of the major motor proteins involved in intracellular transport. It is a protein complex consisting of four subunit classes: heavy chains, intermediate chains (ICs), light intermediate chains, and light chains. In a previous study, we had generated new monoclonal antibodies to the ICs and mapped the ICs to the base of the motor. Because the ICs have been implicated in targeting the motor to cargo, we tested whether these new antibodies to the intermediate chain could block the function of cytoplasmic dynein. When cytoplasmic extracts of Xenopus oocytes were incubated with either one of the monoclonal antibodies (m74–1, m74–2), neither organelle movement nor network formation was observed. Network formation and membrane transport was blocked at an antibody concentration as low as 15 μg/ml. In contrast to these observations, no effect was observed on organelle movement and tubular network formation in the presence of a control antibody at concentrations as high as 0.5 mg/ml. After incubating cytoplasmic extracts or isolated membranes with the monoclonal antibodies m74–1 and m74–2, the dynein IC polypeptide was no longer detectable in the membrane fraction by SDS-PAGE immunoblot, indicating a loss of cytoplasmic dynein from the membrane. We used a panel of dynein IC truncation mutants and mapped the epitopes of both antibodies to the N-terminal coiled-coil domain, in close proximity to the p150Glued binding domain. In an IC affinity column binding assay, both antibodies inhibited the IC–p150Glued interaction. Thus these findings demonstrate that direct IC–p150Glued interaction is required for the proper attachment of cytoplasmic dynein to membranes.