949 resultados para Electromagnetic bandgap
Resumo:
This thesis presents the Radar Cross Section measurements of different geometric structures such as flat plate,cylinder, corner reflector and circular cone loaded with fractal based metallo dielectric structures.Use of different fractal geometris,metallizations of different shapes as well as the frequency tanability is investigated for TE and TM polarization of the incident electromagnetic field.Application of fractal based metallo-dielectric structures results in RCS reduction over a wide range of frequency bands.RCS enhancement of dihedral corner is observed at certain acute and obtuse corner angles.The experimental results are validated using electromagnetic simulation softwares.
Resumo:
A phantom that exhibits complex dielectric properties similar to low-water-content biological tissues over the electromagnetic spectrum of 2000–3000 MHz has been synthesized from carbon black, graphite powder, and poly vinyl acetate (PVA)-based adhesive. The material overcomes various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the material for various concentrations of carbon and graphite are studied. A combination of 50% poly-vinyl-acetate-based adhesive, 20% carbon, and 30% graphite exhibits a high absorption coefficient, which suggests another application of the material as a good microwave absorber for the interior lining of tomographic chamber in microwave imaging. The cavity-perturbation technique is adopted to study the dielectric properties of the material.
Resumo:
Phantoms that exhibit complex dielectric properties similar to low water content biological tissues over the electromagnetic spectrum of 2–3 GHz have been synthesized from carbon black powder, graphite powder and polyvinyl-acetate-based adhesive. The materials overcome various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the materials for various compositions of carbon black and graphite powder are studied. A combination of 50% polyvinylacetate- based adhesive, 20% carbon black powder and 30% graphite powder exhibits high absorption coefficient, which suggests another application of the material as good microwave absorber for interior lining of tomographic chamber in microwave imaging. Cavity perturbation technique is adopted to study the dielectric properties of the material.
Resumo:
Despite its recognized value in detecting and characterizing breast disease, X-ray mammography has important limitations that motivate the quest for alternatives to augment the diagnostic tools that are currently available to the radiologist. The rationale for pursuing electromagnetic methods are based on the significant dielectric contrast between normal and cancerous breast tissues, when exposed to microwaves. The present study analyzes two-dimensional microwave tomographic imaging on normal and malignant breast tissue samples extracted by mastectomy, to assess the suitability of the technique for early detection ofbreast cancer. The tissue samples are immersed in matching coupling medium and are illuminated by 3 GHz signal. 2-D tomographic images ofthe breast tissue samples are reconstructed from the collected scattered data using distorted Born iterative method. Variations of dielectric permittivity in breast samples are distinguishable from the obtained permittivity profiles, which is a clear indication of the presence of malignancy. Hence microwave tomographic imaging is proposed as an alternate imaging modality for early detection ofbreast cancer.
Resumo:
This thesis describes the development and analysis of an Isosceles Trapezoidal Dielectric Resonator Antenna (ITDRA) by realizing different DR orientations with suitable feed configurations enabling it to be used as multiband, dual band dual polarized and wideband applications. The motivation for this work has been inspired by the need for compact, high efficient, low cost antenna suitable for multi band application, dual band dual polarized operation and broadband operation with the possibility of using with MICs, and to ensure less expensive, more efficient and quality wireless communication systems. To satisfy these challenging demands a novel shaped Dielectric Resonator (DR) is fabricated and investigated for the possibility of above required properties by trying out different orientations of the DR on a simple microstrip feed and with slotted ground plane as well. The thesis initially discusses and evaluates recent and past developments taken place within the microwave industry on this topic through a concise review of literature. Then the theoretical aspects of DRA and different feeding techniques are described. Following this, fabrication and characterization of DRA is explained. To achieve the desired requirements as above both simulations and experimental measurements were undertaken. A 3-D finite element method (FEM) electromagnetic simulation tool, HFSSTM by Agilent, is used to determine the optimum geometry of the dielectric resonator. It was found to be useful in producing approximate results although it had some limitations. A numerical analysis technique, finite difference time domain (FDTD) is used for validating the results of wide band design at the end. MATLAB is used for modeling the ITDR and implementing FDTD analysis. In conclusion this work offers a new, efficient and relatively simple alternative for antennas to be used for multiple requirements in the wireless communication system.
Resumo:
In this paper we show that if the electrons in a quantum Hall sample are subjected to a constant electric field in the plane of the material, comparable in magnitude to the background magnetic field on the system of electrons, a multiplicity of edge states localized at different regions of space is produced in the sample. The actions governing the dynamics of these edge states are obtained starting from the well-known Schrödinger field theory for a system of nonrelativistic electrons, where on top of the constant background electric and magnetic fields, the electrons are further subject to slowly varying weak electromagnetic fields. In the regions between the edges, dubbed as the "bulk," the fermions can be integrated out entirely and the dynamics expressed in terms of a local effective action involving the slowly varying electromagnetic potentials. It is further shown how the bulk action is gauge noninvariant in a particular way, and how the edge states conspire to restore the U(1) electromagnetic gauge invariance of the system. In the edge action we obtain a heretofore unnoticed gauge-invariant term that depends on the particular edge. We argue that this term may be detected experimentally as different edges respond differently to a monochromatic probe due to this term
Resumo:
This thesis Entitled Studies on Quasinormal modes and Late-time tails black hole spacetimes. In this thesis, the signature of these new theories are probed on the evolution of field perturbations on the black hole spacetimes in the theory. Chapter 1 gives a general introduction to black holes and its perturbation formalism. Various concepts in the area covered by the thesis are also elucidated in this chapter. Chapter 2 describes the evolution of massive, charged scalar field perturbations around a Reissner-Nordstrom black hole surrounded by a static and spherically symmetric quintessence. Chapter 3 comprises the evolution of massless scalar, electromagnetic and gravitational fields around spherically symmetric black hole whose asymptotes are defined by the quintessence, with special interest on the late-time behavior. Chapter 4 examines the evolution of Dirac field around a Schwarzschild black hole surrounded by quintessence. Detailed numerical simulations are done to analyze the nature of field on different surfaces of constant radius . Chapter 5is dedicated to the study of the evolution of massless fields around the black hole geometry in the HL gravity.
Resumo:
This thesis Entitled Investigations on Broadband planar Dipole Antennas. An antenna is a device ordinarily used for both transmitting and receiving electromagnetic energy. It is an integral part of the radio communication system and accounts for a good deal of progress that has been made in this field during the last few decades.The effect of flaring the dipole arms is studied in Section 4.1. It is observed that the flaring modifies the impedance characteristics of the dipole. In particular, the change in the reactive part of the impedance with frequency is controlled considerably. This improves the 2:1 VSWR bandwidth of the antenna. The effect of various other design parameters on the impedance bandwidth of the antenna are also studied. The important conclusion drawn is that, there is considerable improvement in the impedance bandwidth of the dipole when ground arm dimensions are larger than the main arm dimensions. Theoretical analysis of various cavity backed antennas are given in Chapter 6. The experimental values agree well with the computation. Also the theory gives a clear inside view and explains the reasons for bandwidth enhancement due to flaring and end-loading of the dipole arms. The percentage bandwidth is determined by calculating the Q of the antenna. Since the approach is for the analysis of microstrip antenna on thick grounded substrate, this method cannot be used to predict the impedance bandwidth of the antennas without cavity backup. Also, the structures analysed are simplified versions of the optimised ones. Specially, the arms overlapping is neglected in the analysis. Also, the antennas with symmetrical arms can only be analysed with this theory.
Resumo:
This thesis presents the results of an investigation conducted for the development of a new type of feed horn antenna called "Simulated Scalar Feed". A schematic presentation of the work is given below. A review of the past important work done in the field of conventional/multimode electromagnetic horn antennas is presented in the first part of the second chapter. The work carried out on corrugated horns and surfaces are included in the second part of the review. In the third part, work on dielectric and dielectric loaded metal horns are reviewed. In all the parts of the review, special emphasis is given to theoretical design considerations. The methodology adopted for the experimental investigations is presented in the third chapter. The instrumentation utilized and thThis thesis presents the results of an investigation conducted for the development of a new type of feed horn antenna called "Simulated Scalar Feed". A schematic presentation of the work is given below. A review of the past important work done in the field of conventional/multimode electromagnetic horn antennas is presented in the first part of the second chapter. The work carried out on corrugated horns and surfaces are included in the second part of the review. In the third part, work on dielectric and dielectric loaded metal horns are reviewed. In all the parts of the review, special emphasis is given to theoretical design considerations. The methodology adopted for the experimental investigations is presented in the third chapter. The instrumentation utilized and the details of fabrication ofe details of fabrication of the new simulated scalar feed are described. The method of measurements of radiation characteristics of the antenna are also explained in this chapter. In the fourth chapter the outcome of the experimental results of the investigations carried out on horn antennas fabricated with different physical dimensions and different parameters for the E—plane boundary walls are highlighted. The theoretical explanation used to explain the experimental results is given in the fifth chapter of the thesis. A comparison between the experimental and the theoretical results is also presented in this chapter. In chapter six, the conclusions drawn from the experimental as well as the theoretical investigations are discussed. The advantages and features of the newly developed simulated scalar feed is examined in this chapter. Scope of further investigations in this field is also discussed at the end of this chapter.
Resumo:
With the recent progress and rapid increase in mobile terminals, the design of antennas for small mobile terminals is acquiring great importance. In view of this situation, several design concepts are already been addressed by the scientists and engineers. Compactness and efficiency are the major criteria for mobile terminal antennas. The challenging task of the microwave scientists and engineers is to device compact printed radiating systems having broadband behavior, together with good efficiency. Printed antenna technology has received popularity among antenna scientists after the introduction of microstrip antenna in 1970s. The successors in this kind such as printed monopoles and planar inverted F are also equally important. Scientists and Engineers are trying to explore this technology as a viable coast effective solution for forthcoming microwave revolution. The transmission line perspectives of antennas are very interesting. The concept behind any electromagnetic radiator is simple. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and the orientation of the discontinuities controls the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non resonant structure. Microstrip antennas are suitable for wireless applications due to their low cost, high gain and ease of fabrication. But the major disadvantage of micro strip antennas is their inherent narrow bandwidth. A lot of techniques are introduced by the researchers all over the world to enhance the bandwidth of micro strip patch antennas. The thesis addresses an attempt to enhance the bandwidth of micro strip patch antennas by incorporating impedance matching strip as a part of the micro strip patch antenna. The first part of the thesis deals with the broadband operation of the tilted square slot and polygonal slot loaded square micro strip patch antennas. The resonant mechanisms are clearly mentioned using the simulation and experimental studies. The bandwidth of the polygonal slotted broadband patch antenna is again enhanced by implementing an Lstrip feed mechanism. In the second major part of the thesis, a novel gain enhancement technique for single band and broadband square micro strip patch antennas is achieved by implementing offset stacked configurations.
Resumo:
The need of miniaturization in the present day communication industry is challenging. In the present scenario, printed antenna technology is highly suitable for wireless communication due to its low profile and other desirable radiation characteristics. Small monopole type antennas are overruled by compact small antennas for present day mobile communication applications. Coplanar waveguides (CPW) are printed on one side of a dielectric substrate. CPW have attracted the attention of antenna designers due to their excellent properties like ease of integration with ‘MMIC’, low cost, wide bandwidth, flexibility towards multiband operation, low radiation leakage and less dispersion. The requirement of omnidirectional coverage, light weight and low cost made these CPW fed antennas a good candidate for wireless applications. The main focus of the thesis is the study of coplanar waveguide transmission line. Rigorous investigations were performed on both the ground plane and signal strip of a coplanar waveguide transmission line to create effective radiation characteristics. Good amount of works have been done to transform CPW line to antenna suitable for mobile phone applications
Resumo:
The thesis deals with certain quantum field systems exhibiting spontaneous symmetry breaking and their response to temperature. These models find application in diverse branches such as particle physics, solid state physics and non~linear optics. The nature of phase transition that these systems may undergo is also investigated. The thesis contains seven chapters. The first chapter is introductory and gives a brief account of the various phenomena associated with spontaneous symmetry breaking. The chapter closes with anote on the effect of temperature on quantum field systems. In chapter 2, the spontaneous symmetry breaking phenomena are reviewed in more detail. Chapter 3, deals with the formulation of ordinary and generalised sine-Gordon field theories on a lattice and the study of the nature of phase transition occurring in these systems. In chapter 4, the effect of temperature on these models is studied, using the effective potential method. Chapter 5 is a continuation of this study for another model, viz, the m6 model. The nature of phase transition is also studied. Chapters 5 and 6 constitute a report of the investigations on the behaviour of coupling constants under thermal excitation D1 $4 theory, scalar electrodynamics, abelian and non-abelian gauge theories
Resumo:
Nonlinearity is a charming element of nature and Nonlinear Science has now become one of the most important tools for the fundamental understanding of the nature. Solitons— solutions of a class of nonlinear partial differential equations — which propagate without spreading and having particle— like properties represent one of the most striking aspects of nonlinear phenomena. The study of wave propagation through nonlinear media has wide applications in different branches of physics.Different mathematical techniques have been introduced to study nonlinear systems. The thesis deals with the study of some of the aspects of electromagnetic wave propagation through nonlinear media, viz, plasma and ferromagnets, using reductive perturbation method. The thesis contains 6 chapters
Resumo:
In the present study, an attempt has been made to prepare composites by incorporating expanded graphite fillers in insulating elastomer matrices and to study its DC electrical conductivity, dielectric properties and electromagnetic shielding characteristics, in addition to evaluating the mechanical properties. Recently, electronic devices and components have been rapidly developing and advancing. Thus, with increased usage of electronic devices, electromagnetic waves generated by electronic systems can potentially create serious problems such as malfunctions of medical apparatus and industry robots and can even cause harm to the human body. Therefore, in this work the applicable utility of the prepared composites as electromagnetic interference (EMI) shielding material are also investigated. The dissertation includes nine chapters
Resumo:
The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes. In this work an attempt has been made to prepare conducting elastomeric composites by the incorporation of PPy and PPy coated short Nylon-6 fiber with insulating elastomer matrices- natural rubber and acrylonitrile butadiene rubber. It is well established that mechanical properties of rubber composites can be greatly improved by adding short fibers. Generally short fiber reinforced rubber composites are popular in industrial fields because of their processing advantages, low cost, and their greatly improved technical properties such as strength, stiffness, modulus and damping. In the present work, PPy coated fiber is expected to improve the mechanical properties of the elastomer-PPy composites, at the same time increasing the conductivity. In addition to determination of DC conductivity and evaluation of mechanical properties, the work aims to study the thermal stability, dielectric properties and electromagnetic interference shielding effectiveness of the composites. The thesis consists of ten chapters.