955 resultados para Economic geography.
Resumo:
In this report we analyze the Topic 5 report’s recommendations for reducing nitrogen losses to the Gulf of Mexico (Mitsch et al. 1999). We indicate the relative costs and cost-effectiveness of different control measures, and potential benefits within the Mississippi River Basin. For major nonpoint sources, such as agriculture, we examine both national and basin costs and benefits. Based on the Topic 2 economic analysis (Diaz and Solow 1999), the direct measurable dollar benefits to Gulf fisheries of reducing nitrogen loads from the Mississippi River Basin are very limited at best. Although restoring the ecological communities in the Gulf may be significant over the long term, we do not currently have information available to estimate the benefits of such measures to restore the Gulf’s long-term health. For these reasons, we assume that measures to reduce nitrogen losses to the Gulf will ultimately prove beneficial, and we concentrate on analyzing the cost-effectiveness of alternative reduction strategies. We recognize that important public decisions are seldom made on the basis of strict benefit–cost analysis, especially when complete benefits cannot be estimated. We look at different approaches and different levels of these approaches to identify those that are cost-effective and those that have limited undesirable secondary effects, such as reduced exports, which may result in lost market share. We concentrate on the measures highlighted in the Topic 5 report, and also are guided by the source identification information in the Topic 3 report (Goolsby et al. 1999). Nonpoint sources that are responsible for the bulk of the nitrogen receive most of our attention. We consider restrictions on nitrogen fertilizer levels, and restoration of wetlands and riparian buffers for denitrification. We also examine giving more emphasis to nitrogen control in regions contributing a greater share of the nitrogen load.
Resumo:
In this report we have attempted to evaluate the ecological and economic consequences of hypoxia in the northern Gulf of Mexico. Although our initial approach was to rely on published accounts, we quickly realized that the body of published literature deahng with hypoxia was limited, and we would have to conduct our own exploratory analysis of existing Gulf data, or rely on published accounts from other systems to infer possible or potential effects of hypoxia. For the economic analysis, we developed a conceptual model of how hypoxia-related impacts could affect fisheries. Our model included both supply and demand components. The supply model had two components: (1) a physical production function for fish or shrimp, and (2) the cost of fishing. If hypoxia causes the cost of a unit of fishing effort to change, then this will result in a shift in supply. The demand model considered how hypoxia might affect the quality of landed fish or shrimp. In particular, the market value per pound is lower for small shrimp than for large shrimp. Given the limitations of the ecological assessment, the shallow continental shelf area affected by hypoxia does show signs of hypoxia-related stress. While current ecological conditions are a response to a variety of stressors, the effects of hypoxia are most obvious in the benthos that experience mortality, elimination of larger long-lived species, and a shifting of productivity to nonhypoxic periods (energy pulsing). What is not known is whether hypoxia leads to higher productivity during productive periods, or simply to a reduction of productivity during oxygen-stressed periods. The economic assessment based on fisheries data, however, failed to detect effects attributable to hypoxia. Overall, fisheries landings statistics for at least the last few decades have been relatively constant. The failure to identify clear hypoxic effects in the fisheries statistics does not necessarily mean that they are absent. There are several possibilities: (1) hypoxic effects are small relative to the overall variability in the data sets evaluated; (2) the data and the power of the analyses are not adequate; and (3) currently there are no hypoxic effects on fisheries. Lack of identified hypoxic effects in available fisheries data does not imply that effects would not occur should conditions worsen. Experience with other hypoxic zones around the globe shows that both ecological and fisheries effects become progressively more severe as hypoxia increases. Several large systems around the globe have suffered serious ecological and economic consequences from seasonal summertime hypoxia; most notable are the Kattegat and Black Sea. The consequences range from localized loss of catch and recruitment failure to complete system-wide loss of fishery species. If experiences in other systems are applicable to the Gulf of Mexico, then in the face of worsening hypoxic conditions, at some point fisheries and other species will decline, perhaps precipitously.
Resumo:
Professionals who are responsible for coastal environmental and natural resource planning and management have a need to become conversant with new concepts designed to provide quantitative measures of the environmental benefits of natural resources. These amenities range from beaches to wetlands to clean water and other assets that normally are not bought and sold in everyday markets. At all levels of government — from federal agencies to townships and counties — decisionmakers are being asked to account for the costs and benefits of proposed actions. To non-specialists, the tools of professional economists are often poorly understood and sometimes inappropriate for the problem at hand. This handbook is intended to bridge this gap. The most widely used organizing tool for dealing with natural and environmental resource choices is benefit-cost analysis — it offers a convenient way to carefully identify and array, quantitatively if possible, the major costs, benefits, and consequences of a proposed policy or regulation. The major strength of benefit-cost analysis is not necessarily the predicted outcome, which depends upon assumptions and techniques, but the process itself, which forces an approach to decision-making that is based largely on rigorous and quantitative reasoning. However, a major shortfall of benefit-cost analysis has been the difficulty of quantifying both benefits and costs of actions that impact environmental assets not normally, nor even regularly, bought and sold in markets. Failure to account for these assets, to omit them from the benefit-cost equation, could seriously bias decisionmaking, often to the detriment of the environment. Economists and other social scientists have put a great deal of effort into addressing this shortcoming by developing techniques to quantify these non-market benefits. The major focus of this handbook is on introducing and illustrating concepts of environmental valuation, among them Travel Cost models and Contingent Valuation. These concepts, combined with advances in natural sciences that allow us to better understand how changes in the natural environment influence human behavior, aim to address some of the more serious shortcomings in the application of economic analysis to natural resource and environmental management and policy analysis. Because the handbook is intended for non-economists, it addresses basic concepts of economic value such as willingness-to-pay and other tools often used in decision making such as costeffectiveness analysis, economic impact analysis, and sustainable development. A number of regionally oriented case studies are included to illustrate the practical application of these concepts and techniques.