988 resultados para Earth Observation - Remote Sensing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The normalised difference vegetation index (NDVI) has evolved as a primary tool for monitoring continental-scale vegetation changes and interpreting the impact of short to long-term climatic events on the biosphere. The objective of this research was to assess the nature of relationships between precipitation and vegetation condition, as measured by the satellite-derived NDVI within South Australia. The correlation, timing and magnitude of the NDVI response to precipitation were examined for different vegetation formations within the State (forest, scrubland, shrubland, woodland and grassland). Results from this study indicate that there are strong relationships between precipitation and NDVI both spatially and temporally within South Australia. Differences in the timing of the NDVI response to precipitation were evident among the five vegetation formations. The most significant relationship between rainfall and NDVI was within the forest formation. Negative correlations between NDVI and precipitation events indicated that vegetation green-up is a result of seasonal patterns in precipitation. Spatial patterns in the average NDVI over the study period closely resembled the boundaries of the five classified vegetation formations within South Australia. Spatial variability within the NDVI data set over the study period differed greatly between and within the vegetation formations examined depending on the location within the state. ACRONYMS AVHRR Advanced Very High Resolution Radiometer ENVSAEnvironments of South Australia EOS Terra-Earth Observing System EVIEnhanced Vegetation Index MODIS Moderate Resolution Imaging Spectro-radiometer MVC Maximum Value Composite NDVINormalised Difference Vegetation Index NIRNear Infra-Red NOAANational Oceanic and Atmospheric Administration SPOT Systeme Pour l’Observation de la Terre. [ABSTRACT FROM AUTHOR]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropical deforestation is the major contemporary threat to global biodiversity, because a diminishing extent of tropical forests supports the majority of the Earth's biodiversity. Forest clearing is often spatially concentrated in regions where human land use pressures, either planned or unplanned, increase the likelihood of deforestation. However, it is not a random process, but often moves in waves originating from settled areas. We investigate the spatial dynamics of land cover change in a tropical deforestation hotspot in the Colombian Amazon. We apply a forest cover zoning approach which permitted: calculation of colonization speed; comparative spatial analysis of patterns of deforestation and regeneration; analysis of spatial patterns of mature and recently regenerated forests; and the identification of local-level hotspots experiencing the fastest deforestation or regeneration. The colonization frontline moved at an average of 0.84 km yr(-1) from 1989 to 2002, resulting in the clearing of 3400 ha yr(-1) of forests beyond the 90% forest cover line. The dynamics of forest clearing varied across the colonization front according to the amount of forest in the landscape, but was spatially concentrated in well-defined 'local hotspots' of deforestation and forest regeneration. Behind the deforestation front, the transformed landscape mosaic is composed of cropping and grazing lands interspersed with mature forest fragments and patches of recently regenerated forests. We discuss the implications of the patterns of forest loss and fragmentation for biodiversity conservation within a framework of dynamic conservation planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La Sequenza Sismica Emiliana del 2012 ha colpito la zona compresa tra Mirandola e Ferrara con notevoli manifestazioni cosismiche e post-sismiche secondarie, soprattutto legate al fenomeno della liquefazione delle sabbie e alla formazione di fratturazioni superficiali del terreno. A fronte del fatto che la deformazione principale, osservata tramite tecniche di remote-sensing, ha permesso di individuare la posizione della struttura generatrice, ci si è interrogati sul rapporto tra strutture profonde e manifestazioni secondarie superficiali. In questa tesi è stato svolto un lavoro di integrazione di dati a varia scala, dalla superficie al sottosuolo, fino profondità di alcuni chilometri, per analizzare il legame tra le strutture geologiche che hanno generato il sisma e gli effetti superficiali percepiti dagli osservatori. Questo, non solo in riferimento allo specifico del sisma emiliano del 2012, ma al fine di trarre utili informazioni in una prospettiva storica e geologica sugli effetti di un terremoto “tipico”, in una regione dove le strutture generatrici non affiorano in superficie. Gli elementi analizzati comprendono nuove acquisizioni e rielaborazioni di dati pregressi, e includono cartografie geomorfologiche, telerilevamenti, profili sismici a riflessione superficiale e profonda, stratigrafie e informazioni sulla caratterizzazione dell’area rispetto al rischio sismico. Parte dei dati di nuova acquisizione è il risultato dello sviluppo e la sperimentazione di metodologie innovative di prospezione sismica in corsi e specchi d’acqua continentali, che sono state utilizzate con successo lungo il Cavo Napoleonico, un canale artificiale che taglia ortogonalmente la zona di massima deformazione del sisma del 20 Maggio. Lo sviluppo della nuova metodologia di indagine geofisica, applicata ad un caso concreto, ha permesso di migliorare le tecniche di imaging del sottosuolo, oltre a segnalare nuove evidenze co-sismiche che rimanevano nascoste sotto le acque del canale, e a fornire elementi utili alla stratigrafia del terreno. Il confronto tra dati geofisici e dati geomorfologici ha permesso di cartografare con maggiore dettaglio i corpi e le forme sedimentarie superficiali legati alla divagazione fluviale dall’VIII sec a.C.. I dati geofisici, superficiali e profondi, hanno evidenziato il legame tra le strutture sismogeniche e le manifestazioni superficiali seguite al sisma emiliano. L’integrazione dei dati disponibili, sia nuovi che da letteratura, ha evidenziato il rapporto tra strutture profonde e sedimentazione, e ha permesso di calcolare i tassi geologici di sollevamento della struttura generatrice del sisma del 20 Maggio. I risultati di questo lavoro hanno implicazioni in vari ambiti, tra i quali la valutazione del rischio sismico e la microzonazione sismica, basata su una caratterizzazione geomorfologico-geologico-geofisica dettagliata dei primi 20 metri al di sotto della superficie topografica. Il sisma emiliano del 2012 ha infatti permesso di riconoscere l’importanza del substrato per lo sviluppo di fenomeni co- e post-sismici secondari, in un territorio fortemente eterogeneo come la Pianura Padana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis begins by providing a review of techniques for interpreting the thermal response at the earth's surface acquired using remote sensing technology. Historic limitations in the precision with which imagery acquired from airborne platforms can be geometrically corrected and co-registered has meant that relatively little work has been carried out examining the diurnal variation of surface temperature over wide regions. Although emerging remote sensing systems provide the potential to register temporal image data within satisfactory levels of accuracy, this technology is still not widely available and does not address the issue of historic data sets which cannot be rectified using conventional parametric approaches. In overcoming these problems, the second part of this thesis describes the development of an alternative approach for rectifying airborne line-scanned imagery. The underlying assumption that scan lines within the imagery are straight greatly reduces the number of ground control points required to describe the image geometry. Furthermore, the use of pattern matching procedures to identify geometric disparities between raw line-scanned imagery and corresponding aerial photography enables the correction procedure to be almost fully automated. By reconstructing the raw image data on a truly line-by-line basis, it is possible to register the airborne line-scanned imagery to the aerial photography with an average accuracy of better than one pixel. Providing corresponding aerial photography is available, this approach can be applied in the absence of platform altitude information allowing multi-temporal data sets to be corrected and registered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forests play a pivotal role in timber production, maintenance and development of biodiversity and in carbon sequestration and storage in the context of the Kyoto Protocol. Policy makers and forest experts therefore require reliable information on forest extent, type and change for management, planning and modeling purposes. It is becoming increasingly clear that such forest information is frequently inconsistent and unharmonised between countries and continents. This research paper presents a forest information portal that has been developed in line with the GEOSS and INSPIRE frameworks. The web portal provides access to forest resources data at a variety of spatial scales, from global through to regional and local, as well as providing analytical capabilities for monitoring and validating forest change. The system also allows for the utilisation of forest data and processing services within other thematic areas. The web portal has been developed using open standards to facilitate accessibility, interoperability and data transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

eHabitat is a Web Processing Service (WPS) designed to compute the likelihood of finding ecosystems with equal properties. Inputs to the WPS, typically thematic geospatial "layers", can be discovered using standardised catalogues, and the outputs tailored to specific end user needs. Because these layers can range from geophysical data captured through remote sensing to socio-economical indicators, eHabitat is exposed to a broad range of different types and levels of uncertainties. Potentially chained to other services to perform ecological forecasting, for example, eHabitat would be an additional component further propagating uncertainties from a potentially long chain of model services. This integration of complex resources increases the challenges in dealing with uncertainty. For such a system, as envisaged by initiatives such as the "Model Web" from the Group on Earth Observations, to be used for policy or decision making, users must be provided with information on the quality of the outputs since all system components will be subject to uncertainty. UncertWeb will create the Uncertainty-Enabled Model Web by promoting interoperability between data and models with quantified uncertainty, building on existing open, international standards. It is the objective of this paper to illustrate a few key ideas behind UncertWeb using eHabitat to discuss the main types of uncertainties the WPS has to deal with and to present the benefits of the use of the UncertWeb framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in processing LIDAR data to effectively and efficiently identify ground measurements for the complex terrains in a large LIDAR data set. The GAPM filter is highly automatic and requires little human input. Therefore, it can significantly reduce the effort of manually processing voluminous LIDAR measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.