971 resultados para EXCITATION CROSS-SECTIONS
Resumo:
We study electroweak Sudakov effects in single W, Z and γ production at large transverse momentum using soft collinear effective theory. We present a factorized form of the cross section near the partonic threshold with both QCD and electroweak effects included and compute the electroweak corrections arising at different scales. We analyze their size relative to the QCD corrections as well as the impact of strong-electroweak mixing terms. Numerical results for the vector-boson cross sections at the Large Hadron Collider are presented.
Resumo:
Using methods from effective field theory, we have recently developed a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q T , in which large logarithms of the scale ratio m V /q T are resummed to all orders. This formalism is applied to the production of Higgs bosons in gluon fusion at the LHC. The production cross section receives logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale q∗~mHe−const/αs(mH)≈8 GeV, which protects the process from receiving large long-distance hadronic contributions. We present numerical predictions for the transverse-momentum spectrum of Higgs bosons produced at the LHC, finding that it is quite insensitive to hadronic effects.
Resumo:
We study the differential cross sections for electroweak gauge-boson and Higgs production at small and very small transverse-momentum qT. Large logarithms are resummed using soft-collinear effective theory. The collinear anomaly generates a non-perturbative scale q⁎, which protects the processes from receiving large long-distance hadronic contributions. A numerical comparison of our predictions with data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC is given.
Electroweak gauge-boson and Higgs production at Small qT: Infrared safety from the collinear anomaly
Resumo:
We discuss the differential cross sections for electroweak gauge-boson and Higgs production at small and very small transverse momentum q_T. Large logarithms are resummed using soft-collinear effective theory. The collinear anomaly generates a non-perturbative scale q^∗, which protects the processes from receiving large long-distance hadronic contributions. A numerical comparison of our predictions with data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC is given.
Resumo:
By using observables that only depend on charged particles (tracks), one can efficiently suppress pileup contamination at the LHC. Such measurements are not infrared safe in perturbation theory, so any calculation of track-based observables must account for hadronization effects. We develop a formalism to perform these calculations in QCD, by matching partonic cross sections onto new nonperturbative objects called track functions which absorb infrared divergences. The track function Ti(x) describes the energy fraction x of a hard parton i which is converted into charged hadrons. We give a field-theoretic definition of the track function and derive its renormalization group evolution, which is in excellent agreement with the pythia parton shower. We then perform a next-to-leading order calculation of the total energy fraction of charged particles in e+e−→ hadrons. To demonstrate the implications of our framework for the LHC, we match the pythia parton shower onto a set of track functions to describe the track mass distribution in Higgs plus one jet events. We also show how to reduce smearing due to hadronization fluctuations by measuring dimensionless track-based ratios.
Resumo:
OBJECTIVES: This study sought to assess the vascular response of overlapping Absorb stents compared with overlapping newer-generation everolimus-eluting metallic platform stents (Xience V [XV]) in a porcine coronary artery model. BACKGROUND: The everolimus-eluting bioresorbable vascular scaffold (Absorb) is a novel approach to treating coronary lesions. A persistent inflammatory response, fibrin deposition, and delayed endothelialization have been reported with overlapping first-generation drug-eluting stents. METHODS: Forty-one overlapping Absorb and overlapping Xience V (XV) devices (3.0 × 12 mm) were implanted in the main coronary arteries of 17 nonatherosclerotic pigs with 10% overstretch. Implanted coronary arteries were evaluated by optical coherence tomography (OCT) at 28 days (Absorb n = 11, XV n = 7) and 90 days (Absorb n = 11, XV n = 8), with immediate histological evaluation following euthanasia at the same time points. One animal from each time point was evaluated with scanning electron microscopy alone. A total of 1,407 cross sections were analyzed by OCT and 148 cross sections analyzed histologically. RESULTS: At 28 days in the overlap, OCT analyses indicated 80.1% of Absorb struts and 99.4% of XV struts to be covered (p < 0.0001), corresponding to histological observations of struts with cellular coverage of 75.4% and 99.6%, respectively (p < 0.001). Uncovered struts were almost exclusively related to the presence of "stacked" Absorb struts, that is, with a direct overlay configuration. At 90 days, overlapping Absorb and overlapping XV struts demonstrated >99% strut coverage by OCT and histology, with no evidence of a significant inflammatory process, and comparable % volume obstructions. CONCLUSIONS: In porcine coronary arteries implanted with overlapping Absorb or overlapping XV struts, strut coverage is delayed at 28 days in overlapping Absorb, dependent on the overlay configuration of the thicker Absorb struts. At 90 days, both overlapping Absorb and overlapping XV have comparable strut coverage. The implications of increased strut thickness may have important clinical and design considerations for bioresorbable platforms.
Resumo:
Prompt gamma activation analysis (PGAA) is especially sensitive for elements with high neutron-capture cross sections, like boron, which can be detected down to a level of ng/g. However, if it is a major component, the high count rate from its signal will distort the spectra, making the evaluation difficult. A lead attenuator was introduced in front of the HPGe-detector to reduce low-energy gamma radiation and specifically the boron gamma rays reaching the detector, whose thickness was found to be optimal at 10 mm. Detection efficiencies with and without the lead attenuator were compared, and it was shown that the dynamic range of the PGAA technique was significantly increased. The method was verified with the analyses of stoichiometric compounds: TiB2, NiB, PVC, Alborex, and Alborite.
Resumo:
We present a purely physical model to determine cosmogenic production rates for noble gases and radionuclides in micrometeorites (MMs) and interplanetary dust particles (IDPs) by solar cosmic-rays (SCR) and galactic cosmic-rays (GCR) fully considering recoil loss effects. Our model is based on various nuclear model codes to calculate recoil cross sections, recoil ranges, and finally the percentages of the cosmogenic nuclides that are lost as a function of grain size, chemical composition of the grain, and the spectral distribution of the projectiles. The main advantage of our new model compared with earlier approaches is that we consider the entire SCR particle spectrum up to 240 MeV and not only single energy points. Recoil losses for GCR-produced nuclides are assumed to be equal to recoil losses for SCR-produced nuclides. Combining the model predictions with Poynting-Robertson orbital lifetimes, we calculate cosmic-ray exposure ages for recently studied MMs, cosmic spherules, and IDPs. The ages for MMs and the cosmic-spherule are in the range <2.2–233 Ma, which corresponds, according to the Poynting-Robertson drag, to orbital distances in the range 4.0–34 AU. For two IDPs, we determine exposure ages of longer than 900 Ma, which corresponds to orbital distances larger than 150 AU. The orbital distance in the range 4–6 AU for one MM and the cosmic spherule indicate an origin either in the asteroid belt or release from comets coming either from the Kuiper Belt or the Oort Cloud. Three of the studied MMs have orbital distances in the range 23–34 AU, clearly indicating a cometary origin, either from short-period comets from the Kuiper Belt or from the Oort Cloud. The two IDPs have orbital distances of more than 150 AU, indicating an origin from Oort Cloud comets.
Resumo:
The dynamics of isolated-photon plus jet production in pp collisions at a centre-of-mass energy of 7 TeV has been studied with the ATLAS detector at the LHC using an integrated luminosity of 37 pb^-^1. Measurements of isolated-photon plus jet bin-averaged cross sections are presented as functions of photon transverse energy, jet transverse momentum and jet rapidity. In addition, the bin-averaged cross sections as functions of the difference between the azimuthal angles of the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass frame have been measured. Next-to-leading-order QCD calculations are compared to the measurements and provide a good description of the data, except for the case of the azimuthal opening angle.
Resumo:
Spectra of K0S mesons and Λ hyperons were measured in p+C interactions at 31 GeV/c with the large acceptance NA61/SHINE spectrometer at the CERN SPS. The data were collected with an isotropic graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections, charged pion spectra, and charged kaon spectra were previously measured using the same data set. Results on K0S and Λ production in p+C interactions serve as reference for the understanding of the enhancement of strangeness production in nucleus-nucleus collisions. Moreover, they provide important input for the improvement of neutrino flux predictions for the T2K long baseline neutrino oscillation experiment in Japan. Inclusive production cross sections for K0S and Λ are presented as a function of laboratory momentum in intervals of the laboratory polar angle covering the range from 0 up to 240 mrad. The results are compared with predictions of several hadron production models. The K0S mean multiplicity in production processes
Resumo:
The tonotopic organization of the mammalian cochlea is accompanied by structural gradients which include the somatic lengths of outer hair cells (OHCs). These receptors rest upon the vibrating portion of the basilar membrane and have been reported to exhibit motile responses following chemical and electrical stimulation. These movements were examined in detail in this dissertation. It was found that isolated OHCs cultured in vitro respond to chemical depolarization with slow tonic movements, and to electrical waveforms with bi-directional, frequency following movements extending from DC to at least 10 kHz.^ Slow contractions were also elicited following electrical stimulation, bath incubation in carbachol (a cholinergic agonist), and increases in extracellular K+ concentration as little as 50 mM.^ Isolated OHCs display anatomical features which are remarkable when contrasted with those prepared from intact receptor organs. A complex structure located between the cuticular plate and the nuclear membrane was consistently observed and was examined by serial cross-sections which revealed a network of non-membrane bound densities. This corresponded to a granular complex seen at the light microscope level. The complex was composed of dense regions of organelles, striated structures embedded within the core, and a circumferential network of microtubules residing in the peri-nuclear portion of the cell. In cells which had lost their nuclear attachment to the terminal synaptic body, the granular complex could be made to contract without effecting any change in cellular length, implying that the complex may be the driving force behind certain aspects of the motile response.^ Most cells displayed movements which revealed asymmetries analogous to those reported for OHC receptor potentials in vivo. The contraction phase (for longer cells) was shown to have a small time constant (approximately 400 microseconds) and saturated with limited displacements. The expansion phase had time constants as large as 1.3 milliseconds but yielded displacements as much as 60 percent larger than those seen for contractions.^ Additional waveform characteristics seen in the in vivo response could be emulated either by biasing the cell's resting length with either direct current, triggering contractions via large electrical displacements, or incubation with depolarizing compounds.^ Alternatively, short (20-30 um) cells revealed more linear response characteristics to the probe stimulus. Partial saturation was achieved and revealed a DC component which was opposite in polarity to that seen in longer cells. (Abstract shortened with permission of author.) ^
Resumo:
Encrusting algae are conspicuous components of hard-substratum benthic communities in the photic zone despite being poor competitors and slow growers. Little is known about their growth rates or about mechanisms controlling key processes such as wound healing and surviving overgrowth. We manipulated 12 crustose species (including red and brown algae and a lichen) from the intertidal zone of Washington, USA, studying their varying responses to identical experimental conditions. Three of 8 crust species tested showed increased growth rates with size. Species healed from standardized wounds at different rates and using different mechanisms (e.g. lateral vs vertical regeneration) as seen in cross-sections. Three species showed altered growth rates at unwounded margins of wounded crusts, suggesting intrathallus communication. Year-long experiments involving simulated overgrowth showed that some species can maintain healthy tissue in a covered area, and one (the coralline Lithothamnion phymatodeum) even grew new tissue there. Other species gradually lost color, thickness, and area in covered areas. Hildenbrandia occidentalis survived remarkably well when covered, possibly due to its very slow growth and low metabolic demand. One suggested mechanism underlying the high variation in responses among crusts is the degree to which their thalli may be anatomically integrated by features such as cell fusions; physiological work testing translocation via these features is needed. Other mechanisms allowing persistence include rapid wound healing and frequent recruitment.
Resumo:
A search for supersymmetric particles in final states with zero, one, and two leptons, with and without jets identified as originating from b-quarks, in 4.7 fb(-1) of root s = 7 TeV pp collisions produced by the Large Hadron Collider and recorded by the ATLAS detector is presented. The search uses a set of variables carrying information on the event kinematics transverse and parallel to the beam line that are sensitive to several topologies expected in supersymmetry. Mutually exclusive final states are defined, allowing a combination of all channels to increase the search sensitivity. No deviation from the Standard Model expectation is observed. Upper limits at 95 % confidence level on visible cross-sections for the production of new particles are extracted. Results are interpreted in the context of the constrained minimal supersymmetric extension to the Standard Model and in supersymmetry-inspired models with diverse, high-multiplicity final states.
Resumo:
Using 1.8 fb(-1) of pp collisions at a center- of- mass energy of 7 TeV recorded by the ATLAS detector at the Large Hadron Collider, we present measurements of the production cross sections of Upsilon(1S,2S,3S) mesons. Upsilon mesons are reconstructed using the dimuon decay mode. Total production cross sections for p(T) < 70 GeV and in the rapidity interval vertical bar y(Upsilon)vertical bar < 2. 25 are measured to be, 8.01 +/- 0.02 +/- 0.36 +/- 0.31 nb, 2.05 +/- 0.01 +/- 0.12 +/- 0.08 nb, and 0.92 +/- 0.01 +/- 0.07 +/- 0.04 nb, respectively, with uncertainties separated into statistical, systematic, and luminosity measurement effects. In addition, differential cross section times dimuon branching fractions for Upsilon(1S), Upsilon(2S), and Upsilon(3S) as a function of Upsilon transverse momentum pT and rapidity are presented. These cross sections are obtained assuming unpolarized production. If the production polarization is fully transverse or longitudinal with no azimuthal dependence in the helicity frame, the cross section may vary by approximately +/- 20%. If a nontrivial azimuthal dependence is considered, integrated cross sections may be significantly enhanced by a factor of 2 or more. We compare our results to several theoretical models of Upsilon meson production, finding that none provide an accurate description of our data over the full range of Upsilon transverse momenta accessible with this data set.
Resumo:
A measurement of angular correlations in Drell-Yan lepton pairs via the phi(eta)* observable is presented. This variable probes the same physics as the Z/gamma* boson transverse momentum with a better experimental resolution. The Z/gamma* -> e(+)e(-) and Z/gamma* -> mu(+)mu(-) decays produced in proton-proton collisions at a centre-of-mass energy of root s = 7 TeV are used. The data were collected with the ATLAS detector at the LHC and correspond to an integrated luminosity of 4.6 fb(-1). Normalised differential cross sections as a function of phi(eta)* are measured separately for electron and muon decay channels. These channels are then combined for improved accuracy. The cross section is also measured double differentially as a function of phi(eta)* for three independent bins of the Z boson rapidity. The results are compared to QCD calculations and to predictions from different Monte Carlo event generators. The data are reasonably well described, in all measured Z boson rapidity regions, by resummed QCD predictions combined with fixed-order perturbative QCD calculations or by some Monte Carlo event generators. The measurement precision is typically better by one order of magnitude than present theoretical uncertainties.