856 resultados para ELECTROLYTE MEMBRANES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To study the expression and the function of the 11beta-hydroxysteroid dehydrogenase enzyme 1 (11beta-HSD1) and 2 (11beta-HSD2) in placenta and the fetal membranes from pregnancies with intrauterine growth restriction (IUGR) and from controls. METHODS: Amnion, chorion, decidua and cotyledon were separated from placenta; mRNA was analyzed by TaqMan real-time technology and proteins by Western blot; enzyme activities were measured by the conversion of 3H-cortisol to 3H-cortisone and vice versa. RESULTS: Predominant mRNA expression (p < 0.001) was found for 11beta-HSD1 in chorion and for 11beta-HSD2 in decidua and cotyledon. In pregnancies with IUGR, 11beta-HSD1 was upregulated in chorion (mean DeltaCt 11beta-HSD:18S mRNA 193.5 vs. 103.0 in controls respectively, p < 0.05) and 11beta-HSD2 was downregulated in decidua (mean DeltaCt 11beta-HSD2:18S mRNA 0.18 vs. 15.88 in controls respectively, p < 0.05). 11beta-HSD1 protein levels were reduced in amnion and 11beta-HSD1 and 11beta-HSD2 oxidase activity in decidua and cotyledon were reduced from pregnancies with IUGR. CONCLUSION: Reduced synthesis or activity of 11beta-HSD1 or 2 in cases of IUGR is shown in some but not in all tissues. The local mRNA expression of 11beta-HSD1 in chorion may reflect a mechanism on the post-transcriptional gene regulation to stimulate the formation of cortisone in IUGR. To provoke increasing activity with oxidase stimulators could be a future therapy in cases of IUGR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate whether complement Factor P (properdin) was present in surgically removed choroidal neovascular membranes of patients with age-related macular degeneration (AMD) and to investigate whether associated pre- and postoperative clinical characteristics can be correlated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renal reabsorption of inorganic phosphate (P(i)) is mainly mediated by the Na(+)-dependent P(i)-cotransporter NaPi-IIa that is expressed in the brush-border membrane (BBM) of renal proximal tubules. Regulation and apical expression of NaPi-IIa are known to depend on a network of interacting proteins. Most of the interacting partners identified so far associate with the COOH-terminal PDZ-binding motif (TRL) of NaPi-IIa. In this study GABA(A) receptor-associated protein (GABARAP) was identified as a novel interacting partner of NaPi-IIa applying a membrane yeast-two-hybrid system (MYTH 2.0) to screen a mouse kidney library with the TRL-truncated cotransporter as bait. GABARAP mRNA and protein are present in renal tubules, and the interaction of NaPi-IIa and GABARAP was confirmed by using glutathione S-transferase pulldowns from BBM and coimmunoprecipitations from transfected HEK293 cells. Amino acids 36-68 of GABARAP were identified as the determinant for the described interaction. The in vivo effects of this interaction were studied in a murine model. GABARAP(-/-) mice have reduced urinary excretion of P(i), higher Na(+)-dependent (32)P(i) uptake in BBM vesicles, and increased expression of NaPi-IIa in renal BBM compared with GABARAP(+/+) mice. The expression of Na(+)/H(+) exchanger regulatory factor (NHERF)1, an important scaffold for the apical expression of NaPi-IIa, is also increased in GABARAP(-/-) mice. The absence of GABARAP does not interfere with the regulation of the cotransporter by either parathyroid hormone or acute changes of dietary P(i) content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on recent electrical and optical techniques for investigating cellular signaling reactions in artificial and native membranes immobilized on solid supports. The first part describes the formation of planar artificial lipid bilayers on gold electrodes, which reveal giga-ohm electrical resistance and the insertion and characterization of ionotropic receptors therein. These membranes are suited to record a few or even single ion channels by impedance spectroscopy. Such tethered membranes on planar arrays of microelectrodes offer mechanically robust, long-lasting measuring devices to probe the influence of different chemistries on biologically important ionotropic receptors and therefore will have a future impact to probe the function of channel proteins in basic science and in biosensor applications. In a second part, we present complementary approaches to form inside-out native membrane sheets that are immobilized on micrometer-sized beads or across submicrometer-sized holes machined in a planar support. Because the native membrane sheets are plasma membranes detached from live cells, these approaches offer a unique possibility to investigate cellular signaling processes, such as those mediated by ionotropic or G protein-coupled receptors, with original composition of lipids and proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical reactivity and structure properties of electrogenic bacteria, Geobacter sulfurreducens (Gs) were studied to explore the heterogeneous electron transfer at the bacteria/electrode interface using electrochemical and in-situ spectroscopic techniques. The redox behavior of Gs adsorbed on a gold electrode, which is modified with a ω-functionalized self-assembled monolayer (SAM) of alkanethiols, depends strongly on the terminal group. The latter interacts directly with outermost cytochromes embedded into the outer membrane of the Gs cells. The redox potential of bacterial cells bound electrostatically to a carboxyl-terminated SAM is close to that observed for bacteria attached to a bare gold electrode, revealing a high electronic coupling at the cell/SAM interface. The redox potentials of bacterial cells adsorbed on amino- and pyridyl-terminated SAMs are significantly different suggesting that the outermost cytochromes changes their conformation upon adsorption on these SAMs. No redox activity of Gs was found with CH3-, N(CH3)3+- and OH-terminated SAMs. Complementary in-situ spectroscopic studies on bacteria/SAMs/Au electrode assemblies were carried out to monitor structure changes of the bacterial cells upon polarization. Spectro-electrochemical techniques revealed the electrochemical turnover of the oxidized and reduced states of outer membrane cytochromes (OMCs) in Gs, providing evidence that the OMCs are responsible for the direct electron transfer to metal electrodes, such as gold or silver, during the electricity production. Furthermore, we observed spectroscopic signatures of the native structure of the OMCs and no conformational change during the oxidation/reduction process of the microorganisms. These findings indicate that the carboxyl-anchoring group provides biocompatible conditions for the outermost cytochromes of the Gs, which facilitate the heterogeneous electron transfer at the microorganism/electrode interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied Au(55 nm)@SiO2 nanoparticles (NPs) on two low-index phases of gold and platinum single crystal electrodes in ClO4– and SO42– ion-containing electrolytes by both electrochemical methods and in-situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). We showed the blocking of the electrode with surfactants originating from the synthesis of as-prepared SHINERS NPs. We introduce an efficient procedure to overcome this problem, which provides a fundamental platform for the application of SHINERS in surface electrochemistry and beyond. Our method is based on a hydrogen evolution treatment of the SHINERS-NP-modified single-crystal surfaces. The reliability of our preparation strategy is demonstrated in electrochemical SHINERS experiments on the potential-controlled adsorption and phase formation of pyridine on Au(hkl) and Pt(hkl). We obtained high-quality Raman spectra on these well-defined and structurally carefully characterized single-crystal surfaces. The analysis of the characteristic A1 vibrational modes revealed perfect agreement with the interpretation of single-crystal voltammetric and chronoamperometric experiments. Our study demonstrates that the SHINERS protocol developed in this work qualifies this Raman method as a pioneering approach with unique opportunities for in situ structure and reactivity studies at well-defined electrochemical solid/liquid interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guided tissue regeneration (GTR) with bioabsorbable collagen membranes (CM) is commonly used for the treatment of periodontal defects. The objective of this systematic review of randomized clinical trials was to assess the clinical efficacy of GTR procedures with CM, with or without bone substitutes, in periodontal infrabony defects compared with that of open flap debridement (OFD) alone. Primary outcomes were tooth loss and gain in clinical attachment level (CAL). Screening of records, data extraction, and risk-of-bias assessments were performed by two reviewers. Weighted mean differences were estimated by random effects meta-analysis. We included 21 reports on 17 trials. Risk of bias was generally high. No data were available for the primary outcome tooth loss. The summary treatment effect for change in CAL for GTR with CM compared with OFD was 1.58 mm (95% CI, 1.27 to 1.88). Despite large between-trial heterogeneity (I2 = 75%, p < .001), all trials favored GTR over OFD. No differences in treatment effects were detected between trials of GTR with CM alone and trials of GTR with CM in combination with bone substitutes (p for interaction, .31). GTR with CM, with or without substitutes, may result in improved clinical outcomes compared with those achieved with OFD alone. Our findings support GTR with CM for the treatment of infrabony periodontal defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The nonsteroidal anti-inflammatory drug (NSAID), indomethacin (Indo), has a large number of divergent biological effects, the molecular mechanism(s) for which have yet to be fully elucidated. Interestingly, Indo is highly amphiphilic and associates strongly with lipid membranes, which influence localization, structure and function of membrane-associating proteins and actively regulate cell signaling events. Thus, it is possible that Indo regulates diverse cell functions by altering micro-environments within the membrane. Here we explored the effect of Indo on the nature of the segregated domains in a mixed model membrane composed of dipalmitoyl phosphatidyl-choline (di16:0 PC, or DPPC) and dioleoyl phosphatidyl-choline (di18:1 PC or DOPC) and cholesterol that mimics biomembranes. METHODOLOGY/PRINCIPAL FINDINGS: Using a series of fluorescent probes in a fluorescence resonance energy transfer (FRET) study, we found that Indo induced separation between gel domains and fluid domains in the mixed model membrane, possibly by enhancing the formation of gel-phase domains. This effect originated from the ability of Indo to specifically target the ordered domains in the mixed membrane. These findings were further confirmed by measuring the ability of Indo to affect the fluidity-dependent fluorescence quenching and the level of detergent resistance of membranes. CONCLUSION/SIGNIFICANCE: Because the tested lipids are the main lipid constituents in cell membranes, the observed formation of gel phase domains induced by Indo potentially occurs in biomembranes. This marked Indo-induced change in phase behavior potentially alters membrane protein functions, which contribute to the wide variety of biological activities of Indo and other NSAIDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A heterodimeric 760-kDa dermatan sulphate proteoglycan tentatively named PG-760 was characterized as a product of keratinocytes, endothelial cells, and fibroblasts. The two core proteins of 460 kDa and 300 kDa are linked by disulphide bridges, and both carry one or only very few dermatan sulphate chains. Different antisera against PG-760 were used in the present study to investigate the distribution in selected murine tissues by light and electron microscopy. PG-760 immunostaining was observed in cornea (epithelium including basement membrane, stroma, and Descemet's membrane), skin, mucosa of the small intestine, Engelbreth-Holm-Swarm (EHS)-tumour (matrix and cells), and the smooth muscle layers of uterus, small intestine, and blood vessels. No staining was observed in capillaries, striated muscles, and liver parenchyma including the central vein. The expression of PG-760 in EHS-tumour was also demonstrated after extraction with 4 M guanidine and partial purification by diethylaminoethyl (DEAE)-chromatography. We conclude that this novel proteoglycan exhibits a unique tissue distribution being a constituent of some but not all basement membranes, of some other extracellular matrices, and additionally, of all investigated smooth muscle layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basement membranes are specialized extracellular matrices with support, sieving, and cell regulatory functions. The molecular architectures of these matrices are created through specific binding interactions between unique glycoprotein and proteoglycan protomers. Type IV collagen chains, using NH2-terminal, COOH-terminal, and lateral association, form a covalently stabilized polygonal framework. Laminin, a four-armed glycoprotein, self-assembles through terminal-domain interactions to form a second polymer network, Entactin/nidogen, a dumbbell-shaped sulfated glycoprotein, binds laminin near its center and interacts with type IV collagen, bridging the two. A large heparan sulfate proteoglycan, important for charge-dependent molecular sieving, is firmly anchored in the basement membrane and can bind itself through a core-protein interaction to form dimers and oligomers and bind laminin and type IV collagen through its glycosaminoglycan chains. Heterogeneity of structure and function occur in different tissues, in development, and in response to different physiological needs. The molecular architecture of these matrices may be regulated during or after primary assembly through variations in compositions, isoform substitutions, and the modifying influence of exogenous macromolecules such as heparin and heparan sulfate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For controlled caffeine release, light-responsive membranes were developed. It was possible to produce membranes that reduced their caffeine permeability resistance by about 97% when irradiated with UV-light compared to measurements at daylight. This was achieved by grafting polymers possessing photochromic units onto track-edged polycarbonate membranes. Covalently linked coatings on porous polycarbonate membranes were obtained by plasma activation of the membrane surface followed by plasma-induced graft polymerization. Copolymerization of spiro-compounds during the coating process as well as postmodification of preformed coatings with spiropyran resulted in photochromic membranes. For the copolymerization process, the synthesis of five photochromic methacrylic and acrylic spiropyrans and spirooxazines was successfully performed. Additionally, a spiropyran with carboxylic acid functionality was synthesized for the postmodification process. This enabled us to postmodify polymeric materials containing alcohol or amine groups to obtain photochromic materials. UV-irradiation of these light-responsive membranes resulted in a strong colouration of the membrane, in a reduction of surface tension, which resulted in a decreased caffeine permeability resistance. The membranes were characterized using XPS for the elemental composition of the coating, contact angle measurements for the surface tension, solid-state UV/VIS measurements for the determination of the kinetic and stability properties, and two-photon microscopy for the localisation of the photochromic substance in the porous membrane.