898 resultados para E1A associated p300 protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the activation of three subfamilies of mitogen-activated protein kinases (MAPKs), namely the stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs), the extracellularly responsive kinases (ERKs) and p38-MAPK, by oxidative stress as exemplified by H2O2 in primary cultures of neonatal rat ventricular myocytes. The 46 and 54 kDa species of SAPKs/JNKs were activated 5- and 10-fold, respectively, by 0.1 mM H2O2 (the maximally effective concentration). Maximal activation occurred at 15-30 min, but was still detectable after 2 h. Both ERK1 and ERK2 were activated 16-fold by 0.1 mM H2O2 with a similar time course to the SAPKs/JNKs, and this was comparable with their activation by 1 microM PMA, the most powerful activator of ERKs that we have so far identified in these cells. The activation of ERKs by H2O2 was inhibited by PD98059, which inhibits the activation of MAPK (or ERK) kinases, and by the protein kinase C (PKC) inhibitor, GF109203X. ERK activation was also inhibited by down-regulation of PMA-sensitive PKC isoforms. p38-MAPK was activated by 0.1 mM H2O2 as shown by an increase in its phosphorylation. However, maximal phosphorylation (activation) was more rapid (<5 min) than for the SAPKs/JNKs or the ERKs. We studied the downstream consequences of p38-MAPK activation by examining activation of MAPK-activated protein kinase 2 (MAPKAPK2) and phosphorylation of the MAPKAPK2 substrate, the small heat shock protein HSP25/27. As with p38-MAPK, MAPKAPK2 was rapidly activated (maximal within 5 min) by 0.1 mM H2O2. This activation was abolished by 10 microM SB203580, a selective inhibitor of certain p38-MAPK isoforms. The phosphorylation of HSP25/27 rapidly followed activation of MAPKAPK2 and was also inhibited by SB203580. Phosphorylation of HSP25/27 was associated with a decrease in its aggregation state. These data indicate that oxidative stress is a powerful activator of all three MAPK subfamilies in neonatal rat ventricular myocytes. Activation of all three MAPKs has been associated with the development of the hypertrophic phenotype. However, stimulation of p38-MAPK and the consequent phosphorylation of HSP25/27 may also be important in cardioprotection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the ability of phenylephrine (PE), an alpha-adrenergic agonist and promoter of hypertrophic growth in the ventricular myocyte, to activate the three best-characterized mitogen-activated protein kinase (MAPK) subfamilies, namely p38-MAPKs, SAPKs/JNKs (i.e. stress-activated protein kinases/c-Jun N-terminal kinases) and ERKs (extracellularly responsive kinases), in perfused contracting rat hearts. Perfusion of hearts with 100 microM PE caused a rapid (maximal at 10 min) 12-fold activation of two p38-MAPK isoforms, as measured by subsequent phosphorylation of a p38-MAPK substrate, recombinant MAPK-activated protein kinase 2 (MAPKAPK2). This activation coincided with phosphorylation of p38-MAPK. Endogenous MAPKAPK2 was activated 4-5-fold in these perfusions and this was inhibited completely by the p38-MAPK inhibitor, SB203580 (10 microM). Activation of p38-MAPK and MAPKAPK2 was also detected in non-contracting hearts perfused with PE, indicating that the effects were not dependent on the positive inotropic/chronotropic properties of the agonist. Although SAPKs/JNKs were also rapidly activated, the activation (2-3-fold) was less than that of p38-MAPK. The ERKs were activated by perfusion with PE and the activation was at least 50% of that seen with 1 microM PMA, the most powerful activator of the ERKs yet identified in cardiac myocytes. These results indicate that, in addition to the ERKs, two MAPK subfamilies, whose activation is more usually associated with cellular stresses, are activated by the Gq/11-protein-coupled receptor (Gq/11PCR) agonist, PE, in whole hearts. These data indicate that Gq/11PCR agonists activate multiple MAPK signalling pathways in the heart, all of which may contribute to the overall response (e.g. the development of the hypertrophic phenotype).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The small G protein Ras has been implicated in hypertrophy of cardiac myocytes. We therefore examined the activation (GTP loading) of Ras by the following hypertrophic agonists: phorbol 12-myristate 13-acetate (PMA), endothelin-1 (ET-1), and phenylephrine (PE). All three increased Ras.GTP loading by 10-15-fold (maximal in 1-2 min), as did bradykinin. Other G protein-coupled receptor agonists (e.g. angiotensin II, carbachol, isoproterenol) were less effective. Activation of Ras by PMA, ET-1, or PE was reduced by inhibition of protein kinase C (PKC), and that induced by ET-1 or PE was partly sensitive to pertussis toxin. 8-(4-Chlorophenylthio)-cAMP (CPT-cAMP) did not inhibit Ras.GTP loading by PMA, ET-1, or PE. The association of Ras with c-Raf protein was increased by PMA, ET-1, or PE, and this was inhibited by CPT-cAMP. However, only PMA and ET-1 increased Ras-associated mitogen-activated protein kinase kinase 1-activating activity, and this was decreased by PKC inhibition, pertussis toxin, and CPT-cAMP. PMA caused the rapid appearance of phosphorylated (activated) extracellular signal-regulated kinase in the nucleus, which was inhibited by a microinjected neutralizing anti-Ras antibody. We conclude that PKC- and Gi-dependent mechanisms mediate the activation of Ras in myocytes and that Ras activation is required for stimulation of extracellular signal-regulated kinase by PMA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Given the role of uncoupling protein 2 (UCP2) in the accumulation of fat in the hepatocytes and in the enhancement of protective mechanisms in acute ethanol intake, we hypothesised that UCP2 polymorphisms are likely to cause liver disease through their interactions with obesity and alcohol intake. To test this hypothesis, we investigated the interaction between tagging polymorphisms in the UCP2 gene (rs2306819, rs599277 and rs659366), alcohol intake and obesity traits such as BMI and waist circumference (WC) on alanine aminotransferase (ALT) and gamma glutamyl transferase (GGT) in a large meta-analysis of data sets from three populations (n=20 242). DESIGN AND METHODS: The study populations included the Northern Finland Birth Cohort 1966 (n=4996), Netherlands Study of Depression and Anxiety (n=1883) and LifeLines Cohort Study (n=13 363). Interactions between the polymorphisms and obesity and alcohol intake on dichotomised ALT and GGT levels were assessed using logistic regression and the likelihood ratio test. RESULTS: In the meta-analysis of the three cohorts, none of the three UCP2 polymorphisms were associated with GGT or ALT levels. There was no evidence for interaction between the polymorphisms and alcohol intake on GGT and ALT levels. In contrast, the association of WC and BMI with GGT levels varied by rs659366 genotype (Pinteraction=0.03 and 0.007, respectively; adjusted for age, gender, high alcohol intake, diabetes, hypertension and serum lipid concentrations). CONCLUSION: In conclusion, our findings in 20 242 individuals suggest that UCP2 gene polymorphisms may cause liver dysfunction through the interaction with body fat rather than alcohol intake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small guanine nucleotide-binding proteins of the Ras and Rho (Rac, Cdc42, and Rho) families have been implicated in cardiac myocyte hypertrophy, and this may involve the extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and/or p38 mitogen-activated protein kinase (MAPK) cascades. In other systems, Rac and Cdc42 have been particularly implicated in the activation of JNKs and p38-MAPKs. We examined the activation of Rho family small G proteins and the regulation of MAPKs through Rac1 in cardiac myocytes. Endothelin 1 and phenylephrine (both hypertrophic agonists) induced rapid activation of endogenous Rac1, and endothelin 1 also promoted significant activation of RhoA. Toxin B (which inactivates Rho family proteins) attenuated the activation of JNKs by hyperosmotic shock or endothelin 1 but had no effect on p38-MAPK activation. Toxin B also inhibited the activation of the ERK cascade by these stimuli. In transfection experiments, dominant-negative N17Rac1 inhibited activation of ERK by endothelin 1, whereas activated V12Rac1 cooperated with c-Raf to activate ERK. Rac1 may stimulate the ERK cascade either by promoting the phosphorylation of c-Raf or by increasing MEK1 and/or -2 association with c-Raf to facilitate MEK1 and/or -2 activation. In cardiac myocytes, toxin B attenuated c-Raf(Ser-338) phosphorylation (50 to 70% inhibition), but this had no effect on c-Raf activity. However, toxin B decreased both the association of MEK1 and/or -2 with c-Raf and c-Raf-associated ERK-activating activity. V12Rac1 cooperated with c-Raf to increase expression of atrial natriuretic factor (ANF), whereas N17Rac1 inhibited endothelin 1-stimulated ANF expression, indicating that the synergy between Rac1 and c-Raf is potentially physiologically important. We conclude that activation of Rac1 by hypertrophic stimuli contributes to the hypertrophic response by modulating the ERK and/or possibly the JNK (but not the p38-MAPK) cascades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac hypertrophy, an important adaptational response, is associated with up-regulation of the immediate early gene, c- jun, which encodes the c-Jun transcription factor. c-Jun may feed back to up-regulate its own transcription and, since the c-Jun N-terminal kinase (JNK) family of mitogen-activated protein kinases (MAPKs) phosphorylate c-Jun(Ser-63/73) to increase its transactivating activity, JNKs are thought to be the principal factors involved in c- jun up-regulation. Hypertrophy in primary cultures of cardiac myocytes is induced by endothelin-1, phenylephrine or PMA, probably through activation of one or more of the MAPK family. These three agonists increased c- jun mRNA with the rank order of potency of PMA approximately endothelin-1>phenylephrine. Up-regulation of c- jun mRNA by endothelin-1 was attenuated by inhibitors of protein kinase C (GF109203X) and the extracellular signal-regulated kinase (ERK) cascade (PD98059 or U0126), but not by inhibitors of the JNK (SP600125) or p38-MAPK (SB203580) cascades. Hyperosmotic shock (0.5 M sorbitol) powerfully activates JNKs, but did not increase c- jun mRNA. These data suggest that ERKs, rather than JNKs, are required for c- jun up-regulation. However, endothelin-1 and phenylephrine induced greater up-regulation of c-Jun protein than PMA and phosphorylation of c-Jun(Ser-63/73) correlated with the level of c-Jun protein. Up-regulation of c-Jun protein by endothelin-1 was attenuated by inhibitors of protein kinase C and the ERK cascade, probably correlating with a primary input of ERKs into transcription. In addition, SP600125 inhibited the phosphorylation of c-Jun(Ser-63/73), attenuated the increase in c-Jun protein induced by endothelin-1 and increased the rate of c-Jun degradation. Thus whereas ERKs are the principal MAPKs required for c- jun transcription, JNKs are necessary to stabilize c-Jun for efficient up-regulation of the protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considerable efforts have been expended in elucidating the inter-cellular and intra-cellular signaling pathways which elicit cardiac myocyte hypertrophy or apoptosis, and in identifying the changes which are associated with the end-stage of the response. The challenge now is to link the two. Although some of the signaling effects will be the acute modulation of existing protein function, long-term effects which bring about and maintain the hypertrophic state or which culminate in cell death are mediated at the level of gene and protein expression. With the advances in micro-array technology and genome sequencing, it is now possible to obtain a picture of the global gene expression profile in myocytes or in whole heart which dictates the proteins which could be made. This is not the final picture since additional regulation at the level of translation modulates the relative proportions of each protein that can be made from the transcriptome. Even here, further regulation of protein stability and turnover means that ultimately it is still necessary to examine the proteome to determine what may cause the functional changes in a cell. Thus, in order to gain a full picture of events which regulate the response and gain some insight into possible points of intervention for therapy, it is necessary to examine gene expression, mRNA translation and protein expression in concert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extracellular signal-regulated kinases 1/2 (ERK1/2) are activated in cardiomyocytes by Gq protein-coupled receptors and are associated with induction of hypertrophy. Here, we demonstrate that, in primary cardiomyocyte cultures, ERK1/2 were also significantly activated by platelet-derived growth factor (PDGF), epidermal growth factor (EGF) or fibroblast growth factor (FGF), but insulin, insulin-like growth factor 1 (IGF-1) and nerve growth factor (NGF) had relatively minor effects. PDGF, EGF or FGF increased cardiomyocyte size via ERK1/2, whereas insulin, IGF-1 or NGF had no effect suggesting minimum thresholds/durations of ERK1/2 signaling are required for the morphological changes associated with hypertrophy. Peptide growth factors are widely accepted to activate phospholipase C gamma1 (PLCgamma1) and protein kinase C (PKC). In cardiomyocytes, only PDGF stimulated tyrosine phosphorylation of PLCgamma1 and nPKCdelta. Furthermore, activation of ERK1/2 by PDGF, but not EGF, required PKC activity. In contrast, EGF substantially increased Ras.GTP with rapid activation of c-Raf, whereas stimulation of Ras.GTP loading by PDGF was minimal and activation of c-Raf was delayed. Our data provide clear evidence for differential coupling of PDGF and EGF receptors to the ERK1/2 cascade, and indicate that a minimum threshold/duration of ERK1/2 signaling is required for the development of cardiomyocyte hypertrophy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impaired mechanosensing leads to heart failure and we have previously shown that a decreased ratio of cytoplasmic to nuclear CSRP3/Muscle LIM protein (MLP ratio) is associated with a loss of mechanosensitivity. Here we tested whether passive or active stress/strain was important in modulating the MLP ratio and determined whether this correlated with heart function during the transition to failure. We exposed cultured neonatal rat myocytes to 10% cyclic mechanical stretch at 1 Hz, or electrically paced myocytes at 6.8 V (1 Hz) for 48 h. The MLP ratio decreased 50% (P < 0.05, n = 4) only in response to electrical pacing, suggesting impaired mechanosensitivity. Inhibition of contractility with 10 μM blebbistatin resulted in a ∼3 fold increase in the MLP ratio (n = 8, P < 0.05), indicating that myocyte contractility regulates nuclear MLP. Inhibition of histone deacetylase (HDAC) signaling with trichostatin A increased nuclear MLP following passive stretch, suggesting that HDACs block MLP nuclear accumulation. Inhibition of heme-oxygenase1 (HO-1) activity with PPZII blocked MLP nuclear accumulation. To examine how mechanosensitivity changes during the transition to heart failure, we studied a guinea pig model of angiotensin II infusion (400 ng/kg/min) over 12 weeks. Using subcellular fractionation we showed that the MLP ratio increased 88% (n = 4, P < 0.01) during compensated hypertrophy, but decreased significantly during heart failure (P < 0.001, n = 4). The MLP ratio correlated significantly with the E/A ratio (r = 0.71, P < 0.01 n = 12), a clinical measure of diastolic function. These data indicate for the first time that myocyte mechanosensitivity as indicated by the MLP ratio is regulated primarily by myocyte contractility via HO-1 and HDAC signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GPR30, a former orphan GPCR, is a putative membrane estrogen receptor that can activate rapid signaling pathways such as extracellular regulated kinase (ERK) in a variety of cells and may contribute to estrogen's effects in the central nervous system. The distribution of GPR30 in the limbic system predicts a role for this receptor in the regulation of learning and memory and anxiety by estrogens. Though acute G-1 treatment is reported to be anxiogenic in ovariectomised female mice and in gonadally intact male mice, the effect of GPR30 activation is unknown in gonadectomised male mice. In this study, we show that an acute administration of G-1 to gonadectomised male mice, but not female mice, was anxiolytic on an elevated plus maze task, without affecting locomotor activity. In addition, though G-1 treatment did not regulate ERK, it was associated with increased estrogen receptor (ER)alpha phosphorylation in the ventral, but not dorsal, hippocampus of males. In the female, G-1 increased the ERK activation solely in the dorsal hippocampus, independent of state anxiety. This is the first study to report an anxiolytic effect of GPR30 activation in male mice, in a rapid time frame that is commensurate with non-genomic signaling by estrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In ovariectomized rats, administration of estradiol, or selective estrogen receptor agonists that activate either the alpha or beta isoforms, have been shown to enhance spatial cognition on a variety of learning and memory tasks, including those that capitalize on the preference of rats to seek out novelty. Although the effects of the putative estrogen G-protein-coupled receptor 30 (GPR30) on hippocampus-based tasks have been reported using food-motivated tasks, the effects of activation of GPR30 receptors on tasks that depend on the preference of rats to seek out spatial novelty remain to be determined. Therefore, the aim of the current study was to determine if short-term treatment of ovariectomized rats with G-1, an agonist for GPR30, would mimic the effects on spatial recognition memory observed following short-term estradiol treatment. In Experiment 1, ovariectomized rats treated with a low dose (1mug) of estradiol 48h and 24h prior to the information trial of a Y-maze task exhibited a preference for the arm associated with the novel environment on the retention trial conducted 48h later. In Experiment 2, treatment of ovariectomized rats with G-1 (25mug) 48h and 24h prior to the information trial of a Y-maze task resulted in a greater preference for the arm associated with the novel environment on the retention trial. Collectively, the results indicated that short-term treatment of ovariectomized rats with a GPR30 agonist was sufficient to enhance spatial recognition memory, an effect that also occurred following short-term treatment with a low dose of estradiol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whey proteins are becoming an increasingly popular functional food ingredient. There are, however, sensory properties associated with whey protein beverages that may hinder the consumption of quantities sufficient to gain the desired nutritional benefits. One such property is mouth drying. The influence of protein structure on the mouthfeel properties of milk proteins has been previously reported. This paper investigates the effect of thermal denaturation of whey proteins on physicochemical properties (viscosity, particle size, zeta-potential, pH), and relates this to the observed sensory properties measured by qualitative descriptive analysis and sequential profiling. Mouthcoating, drying and chalky attributes built up over repeated consumption, with higher intensities for samples subjected to longer heating times (p < 0.05). Viscosity, pH, and zeta-potential were found to be similar for all samples, however particle size increased with longer heating times. As the pH of all samples was close to neutral, this implies that neither the precipitation of whey proteins at low pH, nor their acidity, as reported in previous literature, can be the drying mechanisms in this case. The increase in mouth drying with increased heating time suggests that protein denaturation is a contributing factor and a possible mucoadhesive mechanism is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolved resistance to fungicides is a major problem limiting our ability to control agricultural, medical and veterinary pathogens and is frequently associated with substitutions in the amino acid sequence of the target protein. The convention for describing amino-acid substitutions is to cite the wild type amino acid, the codon number and the new amino acid, using the one letter amino acid code. It has frequently been observed that orthologous amino acid mutations have been selected in different species by fungicides from the same mode of action class, but the amino acids have different numbers. These differences in numbering arise from the different lengths of the proteins in each species. The purpose of the current paper is to propose a system for unifying the labelling of amino acids in fungicide target proteins. To do this we have produced alignments between fungicide target proteins of relevant species fitted to a well-studied “archetype” species. Orthologous amino acids in all species are then assigned numerical “labels” based on the position of the amino acid in the archetype protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Objective Adiponectin is an important mediator of insulin sensitivity, encoded by the ADIPOQ gene. Here we describe two Japanese-Brazilian families with hypoadiponectinaemia due to a novel mutation in ADIPOQ. Design and patients In this study, we examined the entire translated regions of adiponectin in Japanese-Brazilians, a population with one of the highest prevalence rates of diabetes worldwide. We screened 200 patients with type 2 diabetes (DM) and 240 age-matched subjects with normal glucose tolerance. Results A novel heterozygous T deletion at position 186 in exon 2 of ADIPOQ, causing a frameshift at codon 62 and leading to a premature termination at codon 168 (p.Gly63ValfsX106), was found in two individuals with diabetes. This mutation was not found in 240 nondiabetic control subjects. In addition, we screened the mutation in an expanded set of 100 nondiabetic subjects from the general Brazilian population, but we found no mutations. In addition, six family members of the probands were identified as mutation-carriers. Individuals who were mutation-carriers had markedly low plasma adiponectin concentrations compared with those without the mutation [DM: 0 center dot 65 (0 center dot 59-1 center dot 34) mu g/ml vs. 5 center dot 30 (3 center dot 10-8 center dot 55) mu g/ml, P < 0 center dot 0001; normal glucose tolerance: 0 center dot 95 (0 center dot 76-1 center dot 48) mu g/ml vs. 8 center dot 50 (5 center dot 52-14 center dot 55) mu g/ml, P = 0 center dot 003]. All individuals carrying the p.Gly63ValfsX106 mutation and older than 30 years were found to be diabetic. Conclusions We describe for the first time a frameshift mutation in exon 2 of the ADIPOQ gene, which modulates adiponectin levels and may contribute to the genetic risk of late-onset diabetes in Japanese-Brazilians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the advent of the postgenomic era, efforts have focused on the development of rapid strategies for annotating plant genes of unknown function. Given its simplicity and rapidity, virus-induced gene silencing (VIGS) has become one of the preeminent approaches for functional analyses. However, several problems remain intrinsic to the use of such a strategy in the study of both metabolic and developmental processes. The most prominent of these is the commonly observed phenomenon of ""sectoring"" the tissue regions that are not effectively targeted by VIGS. To better discriminate these sectors, an effective marker system displaying minimal secondary effects is a prerequisite. Utilizing a VIGS system based on the tobacco rattle virus vector, we here studied the effect of silencing the endogenous phytoene desaturase gene (pds) and the expression and subsequent silencing of the exogenous green fluorescence protein (gfp) on the metabolism of Arabidopsis (Arabidopsis thaliana) leaves and tomato (Solanum lycopersicum) fruits. In leaves, we observed dramatic effects on primary carbon and pigment metabolism associated with the photobleached phenotype following the silencing of the endogenous pds gene. However, relatively few pleiotropic effects on carbon metabolism were observed in tomato fruits when pds expression was inhibited. VIGS coupled to gfp constitutive expression revealed no significant metabolic alterations after triggering of silencing in Arabidopsis leaves and a mild effect in mature green tomato fruits. By contrast, a wider impact on metabolism was observed in ripe fruits. Silencing experiments with an endogenous target gene of interest clearly demonstrated the feasibility of cosilencing in this system; however, carefully constructed control experiments are a prerequisite to prevent erroneous interpretation.