912 resultados para Divided Wall Column
Resumo:
Daptomycin monotherapy was superior to ceftriaxone monotherapy and was highly efficacious in experimental pneumococcal meningitis, sterilizing the cerebrospinal fluid (CSF) of three of three rabbits after 4 to 6 h. With daptomycin therapy only a negligible release of [(3)H]choline as marker of cell wall lysis was detectable in the CSF, peaking around 250 cpm/min after 4 h, compared to a peak of around 2,400 cpm/min after 4 to 6 h for the ceftriaxone-treated rabbits.
Resumo:
OBJECTIVES: An optimized, longitudinal in vivo magnetic resonance vessel wall-imaging protocol was evaluated regarding its capability of detecting differences in the time-dependent atherosclerotic lesion progression in the aortic arch between ApoE(-/-) and double-deficient ApoE(-/-)/TNF(-/-) mice at comparatively early plaque development stages. MATERIALS AND METHODS: Seven ApoE(-/-) and seven ApoE(-/-)/TNF(-/-) female mice underwent MRI at 11.75 teslas at four stages up to 26 weeks of age. A double-gated spin-echo MRI sequence was used with careful perpendicular slice positioning to visualize the vessel wall of the ascending aortic arch. RESULTS: Wall-thickness progression measured with MRI was significant at 11 weeks of age in ApoE(-/-) mice, but only at 26 weeks in ApoE(-/-)/TNF(-/-) mice. A significant correlation was found between MRI wall-thickness and lesion area determined on histology. CONCLUSION: MRI was shown to be sensitive enough to reveal subtle genetically-induced differences in lesion progression at ages earlier than 25 weeks.
Resumo:
AIMS: In pressure overload left ventricular (LV) hypertrophy, gender-related differences in global LV systolic function have been previously reported. The goal of this study was to determine regional systolic function of the left ventricle in male and female patients with hypertensive heart disease. METHODS AND RESULTS: Regional LV function was analyzed from multiplane transesophageal echocardiography with three-dimensional (3D) reconstruction of the left ventricle. In 24 patients (13 males and 11 females), four parallel (2 basal and 2 apical) equidistant short axis cross-sections from base to apex were obtained from the reconstructed LV. In each short axis 24 wall-thickness measurements were carried out at 15 degrees intervals at end-diastole and end-systole. Thus, a total of 192 measurements were obtained in each patient. Wall thickening was calculated as difference of end-diastolic and end-systolic wall thickness, and fractional thickening as thickening divided by end-diastolic thickness. Fractional thickening and wall stress were inversely related to end-diastolic wall thickness in both, males and females. Females showed less LV systolic function when compared to males (p<0.001). However, when corrected for wall stress, which was higher in females, there was no gender difference in systolic function. CONCLUSION: There are regional differences in LV systolic function in females and males which are directly related to differences in wall stress. Thus, gender-related differences in LV regional function are load-dependent and not due to structural differences.
Resumo:
Calcineurin mutation or inhibition enhanced the antifungal morphological effect of cell wall inhibitors caspofungin or nikkomycin Z against Aspergillus fumigatus. Quantification of 1,3-beta-d-glucan revealed decreased amounts in the calcineurin A (DeltacnaA) mutant. Calcineurin can be an excellent adjunct therapeutic target in combination with other cell wall inhibitors against A. fumigatus.
Resumo:
The chest X-ray of a 61-year-old man with severe aortic and mitral stenosis revealed extensive, circularly arranged calcifications in the wall of the left atrial appendage. He died soon after admission to hospital and autopsy confirmed the atrial calcifications in association with severe mitral stenosis. Although such calcification of the left atrial wall is rare, it can be of importance because it may make the usual surgical approach to mitral valve replacement impossible.
Resumo:
Implantation of stents into the bronchial walls is a newly developed method to treat lung emphysema, which is now being tested clinically. During this procedure, a bronchoscope carrying a Doppler ultrasonography head is placed into a segmental bronchus and the blood vessels running in parallel to the bronchus are localized. Once a safe location without blood vessels is found, the bronchial wall is perforated and a stent is placed within the wall to improve the expiratory volume of these "bypasses" to the adjacent lung parenchyma. We observed a fatal complication with this method in a 60-year-old man. The bronchial wall and the pulmonary artery were perforated by one of the stents inducing massive bleeding, which could not be stopped. The patient died due to aspiration of blood in combination with massive loss of blood. The general risk to perforate the pulmonary artery during this procedure cannot be estimated from this single observation but should be considered regarding the legal and clinical aspects.
Resumo:
A 8-year-old boy showed a traumatic ventricular septal rupture following a blunt chest trauma, and was scheduled for elective catheter closure. Two weeks later, a follow-up echocardiogram revealed a pseudoaneurysm of the anterior wall of the left ventricle. Because of the apical location of the VSD, it was decided to proceed with transcatheter occlusion. After successful VSD closure, the patient was taken to the operation room for surgical repair of the left ventricular pseudoaneurysm. Symptoms and signs seen in patients with ventricular pseudoaneurysms appear to be discrete and variable, and a high clinical index of suspicion with a very close echocardiographic follow-up is strongly recommended after occurrence of a blunt cardiac trauma. The combined 'hybrid' approach of transcatheter closure of the intraventricular rupture followed by surgical closure of the pseudoaneurysm allows for a less invasive and efficient management of this rare combination of post-traumatic ventricular free wall and septal rupture in a child.
Resumo:
Water-saturated debris flows are among some of the most destructive mass movements. Their complex nature presents a challenge for quantitative description and modeling. In order to improve understanding of the dynamics of these flows, it is important to seek a simplified dynamic system underlying their behavior. Models currently in use to describe the motion of debris flows employ depth-averaged equations of motion, typically assuming negligible effects from vertical acceleration. However, in many cases debris flows experience significant vertical acceleration as they move across irregular surfaces, and it has been proposed that friction associated with vertical forces and liquefaction merit inclusion in any comprehensive mechanical model. The intent of this work is to determine the effect of vertical acceleration through a series of laboratory experiments designed to simulate debris flows, testing a recent model for debris flows experimentally. In the experiments, a mass of water-saturated sediment is released suddenly from a holding container, and parameters including rate of collapse, pore-fluid pressure, and bed load are monitored. Experiments are simplified to axial geometry so that variables act solely in the vertical dimension. Steady state equations to infer motion of the moving sediment mass are not sufficient to model accurately the independent solid and fluid constituents in these experiments. The model developed in this work more accurately predicts the bed-normal stress of a saturated sediment mass in motion and illustrates the importance of acceleration and deceleration.
Resumo:
The growth of ISO 14001 certificates worldwide has led to much research on the role of voluntary standards in improving the environmental impacts of industry. Most of this research, however, has focused on industrialized countries, with very little research examining the effects of ISO 14001 and other voluntary initiatives in the developing world. This is especially unfortunate because it is in these very countries that proponents of ISO 14001 claim the largest benefits of the standard will occur, by helping polluting industries improve performance and by assisting environmental regulators in enforcing laws more effectively. Indian industries have begun adopting ISO 14001 at an accelerating pace, but there is little available information on what this means for the environmental performance of Indian firms. The research described here closes this gap by exploring the reasons for the increasing popularity of ISO 14001 in India, the ways in which firms use the standard and the benefits they obtain from it. Findings suggest that while the processoriented approach of ISO 14001 does offer important benefits, changing market demands towards cheaper certification and away from rigorous EMS implementation have devalued the standard for those interested in using it as an indicator of a firm’s environmental performance.
Resumo:
This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery system. It has been predicted by the U.S. Energy Information Administration that the transportation sector in the United States will consume approximately 15 million barrels per day in liquid fuels by the year 2025. The proposed coolant-based waste heat recovery technique has the potential to reduce the yearly usage of those liquid fuels by nearly 50 million barrels by only recovering even a modest 1% of the wasted energy within the coolant system. The proposed waste heat recovery technique implements thermoelectric generators on the outside cylinder walls of an internal combustion engine. For this research, one outside cylinder wall of a twin cylinder 26 horsepower water-cooled gasoline engine will be implemented with a thermoelectric generator surrogate material. The vertical location of these TEG surrogates along the water jacket will be varied along with the TEG surrogate thermal conductivity. The aim of this proposed dissertation is to attain empirical evidence of the impact, including energy distribution and cylinder wall temperatures, of installing TEGs in the water jacket area. The results can be used for future research on larger engines and will also assist with proper TEG selection to maximize energy recovery efficiencies.
Resumo:
Since the advent of automobiles, alcohol has been considered a possible engine fuel1,2. With the recent increased concern about the high price of crude oil due to fluctuating supply and demand and environmental issues, interest in alcohol based fuels has increased2,3. However, using pure alcohols or blends with conventional fuels in high percentages requires changes to the engine and fuel system design2. This leads to the need for a simple and accurate conventional fuels-alcohol blends combustion models that can be used in developing parametric burn rate and knock combustion models for designing more efficient Spark Ignited (SI) engines. To contribute to this understanding, numerical simulations were performed to obtain detailed characteristics of Gasoline-Ethanol blends with respect to Laminar Flame Speed (LFS), autoignition and Flame-Wall interactions. The one-dimensional premixed flame code CHEMKIN® was applied to simulate the burning velocity and autoignition characteristics using the freely propagating model and closed homogeneous reactor model respectively. Computational Fluid Dynamics (CFD) was used to obtain detailed flow, temperature, and species fields for Flame-wall interactions. A semi-detailed validated chemical kinetic model for a gasoline surrogate fuel developed by Andrae and Head4 was used for the study of LFS and Autoignition. For the quenching study, a skeletal chemical kinetic mechanism of gasoline surrogate, having 50 species and 174 reactions was used. The surrogate fuel was defined as a mixture of pure n-heptane, isooctane, and toluene. For LFS study, the ethanol volume fraction was varied from 0 to 85%, initial pressure from 4 to 8 bar, initial temperature from 300 to 900K, and dilution from 0 to 32%. Whereas for Autoignition study, the ethanol volume fraction was varied between 0 to 85%, initial pressure was varied between 20 to 60 bar, initial temperature was varied between 800 to 1200K, and the dilution was varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a SI engine. For quenching study three Ethanol blends, namely E0, E25 and E85 are described in detail at an initial pressure of 8 atm and 17 atm. Initial wall temperature was taken to be 400 K. Quenching thicknesses and heat fluxes to the wall were computed. The laminar flame speed was found to increase with ethanol concentration and temperature but decrease with pressure and dilution. The autoignition time was found to increase with ethanol concentration at lower temperatures but was found to decrease marginally at higher temperatures. The autoignition time was also found to decrease with pressure and equivalence ratio but increase with dilution. The average quenching thickness was found to decrease with an increase in Ethanol concentration in the blend. Heat flux to the wall increased with increase in ethanol percentage in the blend and at higher initial pressures. Whereas the wall heat flux decreased with an increase in dilution. Unburned Hydrocarbon (UHC) and CO % was also found to decrease with ethanol concentration in the blend.
Resumo:
A 83-year-old woman underwent percutaneous closure of postinfarction ventricular septal defect following anteroseptal myocardial infarction and percutaneous coronary intervention with stent implantation of the left anterior descending coronary artery. Postinfarction percutaneous ventricular septal defect closure was initially complicated by an iatrogenic left ventricular free-wall perforation. Both defects were closed using two Amplatzer muscular VSD occluders during the same session.
Resumo:
BACKGROUND: The traditional approach to stable blunt thoracic aortic injuries (TAI) is immediate repair, with delayed repair reserved for patients with major associated injuries. In recent years, there has been a trend toward delayed repair, even in low-risk patients. This study evaluates the current practices in the surgical community regarding the timing of aortic repair and its effects on outcomes. METHODS: This was a prospective, observational multicenter study sponsored by the American Association for the Surgery of Trauma. The study included patients with blunt TAI scheduled for aortic repair by open or endovascular procedure. Patients in extremis and those managed without aortic repair were excluded. The data collection included demographics, initial clinical presentation, Injury Severity Scores, type and site of aortic injury, type of aortic repair (open or endovascular repair), and time from injury to aortic repair. The study patients were divided into an early repair (< or = 24 hours) and delayed repair groups (> 24 hours). The outcome variables included survival, ventilator days, intensive care unit (ICU) and hospital lengths of stay, blood transfusions, and complications. The outcomes in the two groups were compared with multivariate analysis after adjusting for age, Glasgow Coma Scale, hypotension, major associated injuries, and type of aortic repair. A second multivariate analysis compared outcomes between early and delayed repair, in patients with and patients without major associated injuries. RESULTS: There were 178 patients with TAI eligible for inclusion and analysis, 109 (61.2%) of which underwent early repair and 69 (38.8%) delayed repair. The two groups had similar epidemiologic, injury severity, and type of repair characteristics. The adjusted mortality was significantly higher in the early repair group (adjusted OR [95% CI] 7.78 [1.69-35.70], adjusted p value = 0.008). The adjusted complication rate was similar in the two groups. However, delayed repair was associated with significantly longer ICU and hospital lengths of stay. Analysis of the 108 patients without major associated injuries, adjusting for age, Glasgow Coma Scale, hypotension, and type of aortic repair, showed that in early repair there was a trend toward higher mortality rate (adjusted OR 9.08 [0.88-93.78], adjusted p value = 0.064) but a significantly lower complication rate (adjusted OR 0.4 [0.18-0.96], adjusted p value 0.040) and shorter ICU stay (adjusted p value = 0.021) than the delayed repair group. A similar analysis of the 68 patients with major associated injuries, showed a strong trend toward higher mortality in the early repair group (adjusted OR 9.39 [0.93-95.18], adjusted p value = 0.058). The complication rate was similar in both groups (adjusted p value = 0.239). CONCLUSIONS: Delayed repair of stable blunt TAI is associated with improved survival, irrespective of the presence or not of major associated injuries. However, delayed repair is associated with a longer length of ICU stay and in the group of patients with no major associated injuries a significantly higher complication rate.