843 resultados para Diurnal firefly
Resumo:
Albumin in tears is used as a diagnostic marker of ocular insult and inflammation, but whether its presence in tears is responsive or part of an adaptive reaction remains unresolved. A review of the literature on tear albumin concentration emphasizes that variables such as collection method, stimulus, assay technique, and disease state influence the quoted values to different extents. Influence of assay technique is negligible in comparison to variation in sampling conditions. Ocular disease increases albumin concentrations but not in a specific manner. The literature review also highlighted that little systematic research has been carried out on the daily cycle of tear albumin levels. In order to remedy this shortcoming, we investigated variations in tear albumin concentration during the waking day. The concentration of albumin in 400 tear samples collected from 13 subjects was assessed at 2-hourly intervals throughout the waking day. Highest daytime albumin concentrations were obtained within 10 minutes of waking, with a mean concentration of >50 ± 22 µg/ml. Albumin levels were at their lowest, but most consistent, 2-6 hours post-waking. This pattern was followed by a progressive increase in albumin concentration during the latter part of the day. Although individual subject-to-subject concentration differences were observed, this distinctive pattern of diurnal variation was found in all subjects. The results presented suggest a regulated, not random, pattern of variation within the period of study. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Die vorliegende Studie prüft Zusammenhänge zwischen Arbeitsintensität, Tätigkeitsspielraum, sozialer Arbeitsumgebung (Kooperation/Kommunikation, soziale Unterstützung, soziale Stressoren) und Stresserleben am Arbeitsplatz mit der basalen Cortisolsekretion im Speichel (Tagesprofil, Aufwachreaktion und Variation über den Tag). Insgesamt 46 Erwerbstätige aus dem Bankwesen sammelten an zwei aufeinander folgenden Arbeitstagen je vier Speichelproben (beim Aufwachen, 30 min nach dem Aufwachen, 14 Uhr und unmittelbar vor dem Zubettgehen), aus denen die individuelle Cortisolkonzentration (Mittelwert aus den jeweils zugehörigen Proben) bestimmt wurde. Die Tätigkeitsmerkmale wurden sowohl mittels Fragebögen als auch objektiv, d.?h. unabhängig vom Arbeitsplatzinhaber, erhoben. Alter, Geschlecht, Rauchen, Body-Mass-Index, gesundheitliche Beeinträchtigungen sowie eventuelle Abweichungen bei der Probensammlung wurden als mögliche Drittvariablen berücksichtigt. Im Ergebnis zeigte sich, dass subjektiv erlebte, geringe soziale Unterstützung und hohe soziale Stressoren mit einer erhöhten Aufwachreaktion bzw. mit einer erhöhten Variation über den Tag assoziiert waren. Für die Arbeitsintensität, den Tätigkeitsspielraum sowie für die objektiv erhobene Kooperation/Kommunikation waren keine Effekte nachweisbar. Die Ergebnisse lassen vermuten, dass sowohl die Belastungs- als auch deren Erhebungsart für den Nachweis von Effekten im Hinblick auf die Cortisolsekretion bei Erwerbstätigen von Bedeutung sind. The present study examines associations between job demands, job control, social work environment (cooperation/communication, social support, social stressors), and strain at work with basal salivary cortisol (day profiles, cortisol awakening reaction, diurnal variation). Forty-six employees collected four saliva samples (immediately after waking up, 30 min after waking up, at 2 p.m. and immediately before going to bed) each on two consecutive working days. We computed the mean across the two days for each of the four saliva samples per employee. Job characteristics were assessed by self-reports as well as by objective job analysis. Analyses were controlled for possible confounding effects of age, gender, smoking, body-mass index, health impairments, and non compliance with the cortisol protocol. Results show that subjectively experienced low social support and high social stressors at work were associated with elevated cortisol awakening reaction and elevated diurnal variation. We found no effects for job demands, job control or objectively assessed cooperation/communication. Our results suggest that both the type of job characteristic as well as the type of measurement of job characteristics have to be taken into account when relating them to employees’ cortisol secretion.
Resumo:
The spectral distribution of solar radiation was studied under different sky conditions during a 15- month period in Miami, Florida (USA), and over a latitudinal gradient at solar maximum. Spectroradiometric scans were characterized for total irradiance (300- 3000 nm) and the relative energetic and photon contributions of the following wavelength regions: UV-B (300-320nm); UV-A (320-400nm); B (400-500rim); PAR (400-700 nm); R (600-700 nm); and FR (728- 732 rim). Notable results include: (i) significantly higher UV-A energy fluxes than currently in use for laboratory experiments involving the biological effects of this bandwidth (values ranged from 33.6 to 55.4 W/m 2 in Miami over the year); (ii) marked diurnal shifts in B:R and R:FR, with elevated R:FR values in early morning: (iii) a strong correlation between R: FR and atmospheric water content; and (iv) unusually high PAR values under direct sunlight with cloudy skies (2484 ~tmot/2 per s).
Resumo:
Small potted trees of Spondias purpurea were monitored to determine the costs and controls of flowering and fruiting. The effect of photoperiod, extremes in moisture and temperature, and defoliation were examined. The carbon exchange rates of the leaves, shoots and fruits were determined. Light response curves and diurnal levels were also investigated. $\sp{13}$Carbon labeling was used to determine which plant parts are carbon sinks. Photoperiod induces dormancy and bud activity. Extremes in soil moisture and temperature induce leaf fall. Flowers, fruits, and roots are carbon sinks. The results were used to develop a phenological model with latitude, soil moisture, and air temperature as variables. ^
Resumo:
The detailed organic composition of atmospheric fine particles with an aerodynamic diameter smaller than or equal to 2.5 micrometers (PM2.5) is an integral part of the knowledge needed in order to fully characterize its sources and transformation in the environment. For the study presented here, samples were collected at 3-hour intervals. This high time resolution allows gaining unique insights on the influence of short- and long-range transport phenomena, and dynamic atmospheric processes. A specially designed sequential sampler was deployed at the 2002-2003 Baltimore PM-Supersite to collect PM2.5 samples at a 3-hourly resolution for extended periods of consecutive days, during both summer and winter seasons. Established solvent-extraction and GC-MS techniques were used to extract and analyze the organic compounds in 119 samples from each season. Over 100 individual compounds were quantified in each sample. For primary organics, averaging the diurnal ambient concentrations over the sampled periods revealed ambient patterns that relate to diurnal emission patterns of major source classes. Several short-term releases of pollutants from local sources were detected, and local meteorological data was used to pinpoint possible source regions. Biogenic secondary organic compounds were detected as well, and possible mechanisms of formation were evaluated. The relationships between the observed continuous variations of the concentrations of selected organic markers and both the on-site meteorological measurements conducted parallel to the PM2.5 sampling, and the synoptic patterns of weather and wind conditions were also examined. Several one-to-two days episodes were identified from the sequential variation of the concentration observed for specific marker compounds and markers ratios. The influence of the meteorological events on the concentrations of the organic compounds during selected episodes was discussed. It was observed that during the summer, under conditions of pervasive influence of air masses originated from the west/northwest, some organic species displayed characteristics consistent with the measured PM2.5 being strongly influenced by the aged nature of these long-traveling background parcels. During the winter, intrusions from more regional air masses originating from the south and the southwest were more important.
Resumo:
The marked decline in tree island cover across the Everglades over the last century, has been attributed to landscape-scale hydrologic degradation. To preserve and restore Everglades tree islands, a clear understanding of tree island groundwater-surface water interactions is needed, as these interactions strongly influence the chemistry of shallow groundwater and the location and patterns of vegetation in many wetlands. The goal of this work was to define the relationship between groundwater-surface water interactions, plant-water uptake, and the groundwater geochemical condition of tree islands. Groundwater and surface water levels, temperature, and chemistry were monitored on eight constructed and one natural tree island in the Everglades from 2007–2010. Sap flow, diurnal water table fluctuations and stable oxygen isotopes of stem, ground and soil water were used to determine the effect of plant-water uptake on groundwater-surface water interactions. Hydrologic and geochemical modeling was used to further explore the effect of plant-groundwater-surface water interactions on ion concentrations and potential mineral formation.^
Resumo:
In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the Everglades ecosystem.
Resumo:
Lake Analyzer is a numerical code coupled with supporting visualization tools for determining indices of mixing and stratification that are critical to the biogeochemical cycles of lakes and reservoirs. Stability indices, including Lake Number, Wedderburn Number, Schmidt Stability, and thermocline depth are calculated according to established literature definitions and returned to the user in a time series format. The program was created for the analysis of high-frequency data collected from instrumented lake buoys, in support of the emerging field of aquatic sensor network science. Available outputs for the Lake Analyzer program are: water temperature (error-checked and/or down-sampled), wind speed (error-checked and/or down-sampled), metalimnion extent (top and bottom), thermocline depth, friction velocity, Lake Number, Wedderburn Number, Schmidt Stability, mode-1 vertical seiche period, and Brunt-Väisälä buoyancy frequency. Secondary outputs for several of these indices delineate the parent thermocline depth (seasonal thermocline) from the shallower secondary or diurnal thermocline. Lake Analyzer provides a program suite and best practices for the comparison of mixing and stratification indices in lakes across gradients of climate, hydro-physiography, and time, and enables a more detailed understanding of the resulting biogeochemical transformations at different spatial and temporal scales.
Resumo:
The purpose of this work is to increase ecological understanding of Avicennia germinans L. and Laguncularia racemosa (L.) Gaertn. F. growing in hypersaline habitats with a seasonal climate. The area has a dry season (DS) with low temperature and vapour pressure deficit (vpd), and a wet season (WS) with high temperature and slightly higher vpd. Seasonal patterns in interstitial soil water salinity suggested a lack of tidal flushing in this area to remove salt along the soil profile. The soil solution sodium/potassium (Na+/K+) ratio differed slightly along the soil profile during the DS, but during the WS it was significantly higher at the soil surface. Diurnal changes in xylem osmolality between predawn (higher) and midday (lower) were observed in both species. However, A. germinans had higher xylem osmolality compared to L. racemosa. Xylem Na+/K+ suggested higher selectivity of K+ over Na+ in both species and seasons. The water relations parameters derived from pressure–volume P–V curves were relatively stable between seasons for each species. The range of water potentials (Ψ), measured in the field, was within estimated values for turgor maintenance from P–V curves. Thus the leaves of both species were osmotically adapted to maintain continued water uptake in this hypersaline mangrove environment.
Resumo:
Back-reef seascapes represent critical habitat for juvenile and adult fishes. Patch reef, seagrass, and mangrove habitats form a heterogeneous mosaic, often linked by species that use reefs as structure during the day and make foraging migrations into soft-bottom habitat at night. Artificial reefs are used to model natural patch reefs, however may not function equivalently as fish habitat. To study the relative value of natural and artificial patch reefs as fish habitat, these communities in the Sea of Abaco, Bahamas were compared using roving diver surveys and time-lapse photography. Diel turnover in fish abundance, recorded with time-lapse photography and illuminated by infrared light, was quantified across midday, dusk, and night periods to explore possible effects of reef type (artificial vs. natural) on these patterns. Diurnal communities on natural reefs exhibited greater fish abundance, species richness, and functional diversity compared to artificial reefs. Furthermore, both types of reef communities exhibited a significant shift across the diel period, characterized by a decline in total fish density at night, especially for grunts (Haemulidae). Cross-habitat foraging migrations by diurnal or nocturnal species, such as haemulids, are likely central drivers of this twilight turnover and can represent important energy and nutrient subsidies. Time-lapse surveys provided more consistent measures of reef fish assemblages for the smaller artificial reef habitats, yet underestimated abundance of certain taxa and species richness on larger patch habitats when compared to the roving diver surveys. Time-lapse photography complemented with infrared light represent a valuable non-invasive approach to studying behavior of focal species and their fine-scale temporal dynamics in shallow-reef communities.
Resumo:
The detailed organic composition of atmospheric fine particles with an aerodynamic diameter smaller than or equal to 2.5 micrometers (PM 2.5) is an integral part of the knowledge needed in order to fully characterize its sources and transformation in the environment. For the study presented here, samples were collected at 3-hour intervals. This high time resolution allows gaining unique insights on the influence of short- and long-range transport phenomena, and dynamic atmospheric processes. A specially designed sequential sampler was deployed at the 2002-2003 Baltimore PM Supersite to collect PM2.5 samples at a 3-hourly resolution for extended periods of consecutive days, during both summer and winter seasons. Established solvent-extraction and GC-MS techniques were used to extract and analyze the organic compounds in 119 samples from each season. Over 100 individual compounds were quantified in each sample. For primary organics, averaging the diurnal ambient concentrations over the sampled periods revealed ambient patterns that relate to diurnal emission patterns of major source classes. Several short-term releases of pollutants from local sources were detected, and local meteorological data was used to pinpoint possible source regions. Biogenic secondary organic compounds were detected as well, and possible mechanisms of formation were evaluated. The relationships between the observed continuous variations of the concentrations of selected organic markers and both the on-site meteorological measurements conducted parallel to the PM2.5 sampling, and the synoptic patterns of weather and wind conditions were also examined. Several one-to-two days episodes were identified from the sequential variation of the concentration observed for specific marker compounds and markers ratios. The influence of the meteorological events on the concentrations of the organic compounds during selected episodes was discussed. It was observed that during the summer, under conditions of pervasive influence of air masses originated from the west/northwest, some organic species displayed characteristics consistent with the measured PM2.5 being strongly influenced by the aged nature of these long-traveling background parcels. During the winter, intrusions from more regional air masses originating from the south and the southwest were more important.
Resumo:
Some current meter data obtained from a mooring at 2450 m water depth near the continental slope off Portugal are presented. The mean currents at five levels with observations are northward. Mean speeds in the core of the Mediterranean Water exceed speeds at shallower levels by 2 to 3 cm/sec, indicating advection connected to this specific water mass. The current variability is dominated by semi-diurnal tidal components. Normal mode analysis reveals a predominant mode of order 2, representing 48% of the total kinetic tidal energy. Results for the barotropic tidal component are in good agreement with earlier predictions for this area. The motion at higher frequencies w in the internal gravity wave band can be well described by a w**-2 power law for the energy density spectrum. This result is consistent with earlier observations in other parts of the ocean.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Caffeine is the most consumed psychostimulant, with effects on attention, memory, and arousal. But when this substance is ingested near to bedtime there is a decrease on sleep, interfering on mnemonic processes. So, our ain was to investigate how the caffeine ingested near to sleep onset acts on sleep and memory in marmosets. We used 16 adult marmosets, single housed, in a 12:12h light-dark cycle. For registering locomotor activity were used two kinds of sensors. The gyroscope sensor registers activity each 30 sec and detects motion with good accuracy. Because of this we used this sensor for detecting nocturnal activity. The second sensor was based on infrared and accumulates activity each 5 min and it’s not able to detect nocturnal activity, just diurnal activity. We also used camera for registering Rest phase of one marmoset. For the cognitive task, the animals needed to learn a rewarded context (CR) when compared to a non-rewarded context CNR). This experiment comprises 5 phases: 1) Two days of habituation to apparatus; 2)Training for 8 days; 3) oral administration of caffeine (10 mg/kg) or placebo administration ±1h before sleep onset, for 8 days, with marmosets receiving placebo or caffeine; 4) retraining to apparatus and after that, placebo administration (placebo group-GP), or caffeine administration (with continuous group-GC and acute groupGA); 5) Test, for evaluating learning to CR. The sessions were filmed and each one had 8 min of duration. At 7 am started the habituation, training and test sessions, and at 3:15 pm started retraining. The results for gyroscope sensor showed that there was coincidence of 68,57% with nocturnal register of the cameras. Then, the gyroscope sensors detected nocturnal activity for all experimental groups Moreover, when compared sensor gyroscope with sensor based on infrared, was observed that both sensor presented similarity on patterns of activity curve. When we observed the effects of caffeine on Activity-Rest Cycle in GP, GA and GC, is possible to see that that gyroscope sensors and based on infrared presented only intra group differences. As behavioral results, the marmosets learned to discriminate CR when compared to CNR. Moreover, GP presented deficits on memory recall during the test, and GA increased the memory recall, when both were compared to GP. We concluded that the marmosets were able to learning the cognitive task and that the caffeine ingested near to sleep onset acts modulating memory in these animals. Moreover the gyroscope sensor can be used as alternative tool for investigating nocturnal activity. Then, the utilization of this non-invasive device allows marmosets exhibit their behavior within the laboratory conditions as natural as possible.
Resumo:
While the carnivores are considered regulators and structuring of natural communities are also extremely threatened by human activities. Endangered little-spotted-cat (Leopardus tigrinus) is one of the lesser known species from the Neotropical cats. In this work we investigate the occupancy and the activity pattern of L. tigrinus in Caatinga of Rio Grande do Norte testing: 1) how environmental and anthropogenic factors influence their occupation and 2) how biotic and abiotic factors influence their activity pattern. For this we raised occurrence data of species in 10 priority areas for conservation. We built hierarchical models of occupancy based on maximum likelihood to represent biological hypotheses which were ranked using the Akaike Information Criterion (AIC). According to the results the feline occupancy is more likely away from rural settlements and in areas with a higher proportion of woody vegetation. The opportunistic killing of L. tigrinus and in retaliation for poultry predation close to residential areas can explain this result; as well as more complex vegetation structure can better serve as refuge and ensure more food. Analyzing the records of the species through circular statistics we conclude that the activity pattern is mostly nocturnal, although considerable crepuscular and a small diurnal activity. L. tigrinus activity was directly affected by the availability of small terrestrial mammals, which are essentially nocturnal. In addition, the temperatures recorded in the environment directly and indirectly affect the activity of the little-spotted-cat, as also influence the activity of their potential prey. Generally, the cats were more active when possible prey were active, and this happened at night when lower temperatures are recorded. Moreover, the different lunar phases did not affect the activity pattern. The results improve the understanding of an endangered feline inhabiting the Caatinga biome, and thus can help develop conservation and management strategies, as well as in planning future research in this semi-arid ecosystem.