984 resultados para Distributed vertical loads


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear fusion has arisen as an alternative energy to avoid carbon dioxide emissions, being the tokamak a promising nuclear fusion reactor that uses a magnetic field to confine plasma in the shape of a torus. However, different kinds of magnetohydrodynamic instabilities may affect tokamak plasma equilibrium, causing severe reduction of particle confinement and leading to plasma disruptions. In this sense, numerous efforts and resources have been devoted to seeking solutions for the different plasma control problems so as to avoid energy confinement time decrements in these devices. In particular, since the growth rate of the vertical instability increases with the internal inductance, lowering the internal inductance is a fundamental issue to address for the elongated plasmas employed within the advanced tokamaks currently under development. In this sense, this paper introduces a lumped parameter numerical model of the tokamak in order to design a novel robust sliding mode controller for the internal inductance using the transformer primary coil as actuator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These stories are based on a selection of regional pilot projects that were completed for the Distributed e-Learning Programme between 2005 and 2007. As part of this HEFCEfunded programme, JISC commissioned 21 projects around the use of technology to support lifelong learning in a regional context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supporting presentation slides to accompany the Janet network end to end performance initiative workshop

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broad scale features in the horizontal, vertical, and seasonal distribution of phytoplankton chlorophyll a on the northeast U.S. continental shelf are described based on 57,088 measurements made during 78 oceanographic surveys from 1977 through 1988. Highest mean water column chlorophyll concentration (Chlw,) is usually observed in nearshore areas adjacent to the mouths of the estuaries in the Middle Atlantic Bight (MAB), over the shallow water on Georges Bank, and a small area sampled along the southeast edge of Nantucket Shoals. Lowest Chlw «0.125 ug l-1) is usually restricted to the most seaward stations sampled along the shelf-break and the central deep waters in the Gulf of Maine. There is at least a twofold seasonal variation in phytoplankton biomass in all areas, with highest phytoplankton concentrations (m3) and highest integrated standing stocks (m2) occurring during the winter-spring (WS) bloom, and the lowest during summer, when vertical density stratification is maximal. In most regions, a secondary phytoplankton biomass pulse is evident during convective destratification in fall, usually in October. Fall bloom in some areas of Georges Bank approaches the magnitude of the WS-bloom, but Georges Bank and Middle Atlantic Bight fall blooms are clearly subordinate to WS-blooms. Measurements of chlorophyll in two size-fractions of the phytoplankton, netplankton (>20 um) and nanoplankton «20 um), revealed that the smaller nanoplankton are responsible for most of the phytoplankton biomass on the northeast U.S. shelf. Netplankton tend to be more abundant in nearshore areas of the MAB and shallow water on Georges Bank, where chlorophyll a is usually high; nanoplankton dominate deeper water at the shelf-break and deep water in the Gulf of Maine, where Chlw is usually low. As a general rule, the percent of phytoplankton in the netplankton size-fraction increases with increasing depth below surface and decreases proceeding offshore. There are distinct seasonal and regional patterns in the vertical distribution of chlorophyll a and percent netplankton, as revealed in composite vertical profiles of chlorophyll a constructed for 11 layers of the water column. Subsurface chlorophyll a maxima are ubiquitous during summer in stratified water. Chlorophyll a in the subsurface maximum layer is generally 2-8 times the concentration in the overlying and underlying water and approaches 50 to 75% of the levels observed in surface water during WS-bloom. The distribution of the ratio of the subsurface maximum chlorophyll a to surface chlorophyll a (SSR) during summer parallels the shelfwide pattern for stability, indexed as the difference in density (sigma-t) between 40 m and surface (stability 40. The weakest stability and lowest SSR's are found in shallow tidally-mixed water on Georges Bank; the greatest stability and highest SSR's (8-12:1) are along the mid and outer MAB shelf, over the winter residual water known as the "cold band." On Georges Bank, the distribution of SSR and the stability40 are roughly congruent with the pattern for maximum surface tidal current velocity, with values above 50 cms-1 defining SSR's less than 2:1 and the well-mixed area. Physical factors (bathymetry, vertical mixing by strong tidal currents, and seasonal and regional differences in the intensity and duration of vertical stratification) appear to explain much of the variability in phytoplankton chlorophyll a throughout this ecosystem. (PDF file contains 126 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of remotely sensed gappy Sea surface temperature (SST) images with the missing data filling DINEOF (data interpolating empirical orthogonal functions) technique, followed by a principal component analysis of the reconstructed data, has been used to identify the time evolution and the daily scale variability of the wintertime surface signal of the Iberian Poleward Current (IPC), or Navidad, during the 1981-2010 period. An exhaustive comparison with the existing bibliography, and the vertical temperature and salinity profiles related to its extremes over the Bay of Biscay area, show that the obtained time series accurately reflect the IPC-Navidad variability. Once a time series for the evolution of the SST signal of the current over the last decades is well established, this time series is used to propose a physical mechanism in relation to the variability of the IPC-Navidad, involving both atmospheric and oceanic variables. According to the proposed mechanism, an atmospheric circulation anomaly observed in both the 500 hPa and the surface levels generates atmospheric surface level pressure, wind-stress and heat-flux anomalies. In turn, those surface level atmospheric anomalies induce mutually coherent SST and sea level anomalies over the North Atlantic area, and locally, in the Bay of Biscay area. These anomalies, both locally over the Bay of Biscay area and over the North Atlantic, are in agreement with several mechanisms that have separately been related to the variability of the IPC-Navidad, i.e. the south-westerly winds, the joint effect of baroclinicity and relief (JEBAR) effect, the topographic beta effect and a weakened North Atlantic gyre.