972 resultados para Distributed environments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide range of issues relating to the presence and fate of pesticides and other micro-organic contaminants (MOCs) in surface freshwater sedimentary environments is reviewed. These issues include the sources, transport and occurrence of MOCs in freshwater environments; their ecological effects; their interaction with sedimentary material; and a range of processes related to their fate, including degradation, diffusion in bed sediments, bioturbation and slow contaminant release. An emphasis is placed on those processes-chemical, physical or biological-in which sediments play a role in determining the fate of micro-organics in freshwater environments. The issues of occurrence, source and transport, and the ecological effects of micro-organics are introduced more briefly, the focus where these aspects are concerned being largely on pesticides. In the concluding section, key points and issues relating to the study of micro-organics in freshwater environments are summarised and areas where initial or further research would be welcome are highlighted. It is hoped that this paper will both form a useful reference for workers in the field of micro-organic contaminants, and also stimulate new work in the freshwater environment and beyond. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic technique for identifying the environments of construction projects is described. It provides a method for isolating the major variables surrounding construction projects, and is briefly applied to the industries of Britain and Jamaica to illustrate its application. From this, it is inferred that the environment of a Jamaican construction project in systems terms is broadly similar to the environment of a construction project in Britain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consumption of green leafy vegetables is associated with reduced risk of several types of cancer and cardiovascular disease. These beneficial effects are attributed to a range of phytochemicals including flavonoids and glucosinolates, both of which are found in high levels in Brassicaceous crops. Rocket is the general name attributed to cultivars of Eruca sativa and Diplotaxis tenufolia, known as salad rocket and wild rocket, respectively. We have shown that different light levels during the cultivation period of these crops have a significant impact on the levels of flavonoids present in the crop at harvest, with over 15-fold increase achieved in quercetin, isorhamnetin, and cyanidin in high light conditions. Postharvest storage further affects the levels of both flavonoids and glucosinolates, with cyanidin increasing during shelf life and some glucosinolates, such as glucoiberverin, being reduced over the same storage period. In vitro assays using human colon cell lines demonstrate that glucosinolate-rich extracts of Eruca sativa cv. Sky, but not Diplotaxis tenufolia cv. Voyager, confer significant resistance to oxidative stress on the cells, which is indicative of the chemoprotective properties of the leaves from this species. Our findings indicate that both pre and postharvest environment and genotypic selection, when developing new lines of Brassicaceous vegetables, are important considerations with the goal of improving human nutrition and health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a distributed computing framework for problems characterized by a highly irregular search tree, whereby no reliable workload prediction is available. The framework is based on a peer-to-peer computing environment and dynamic load balancing. The system allows for dynamic resource aggregation, does not depend on any specific meta-computing middleware and is suitable for large-scale, multi-domain, heterogeneous environments, such as computational Grids. Dynamic load balancing policies based on global statistics are known to provide optimal load balancing performance, while randomized techniques provide high scalability. The proposed method combines both advantages and adopts distributed job-pools and a randomized polling technique. The framework has been successfully adopted in a parallel search algorithm for subgraph mining and evaluated on a molecular compounds dataset. The parallel application has shown good calability and close-to linear speedup in a distributed network of workstations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering is defined as the grouping of similar items in a set, and is an important process within the field of data mining. As the amount of data for various applications continues to increase, in terms of its size and dimensionality, it is necessary to have efficient clustering methods. A popular clustering algorithm is K-Means, which adopts a greedy approach to produce a set of K-clusters with associated centres of mass, and uses a squared error distortion measure to determine convergence. Methods for improving the efficiency of K-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting a more efficient data structure, notably a multi-dimensional binary search tree (KD-Tree) to store either centroids or data points. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient K-Means techniques in parallel computational environments. In this work, we provide a parallel formulation for the KD-Tree based K-Means algorithm and address its load balancing issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, two approaches have been introduced that distribute the molecular fragment mining problem. The first approach applies a master/worker topology, the second approach, a completely distributed peer-to-peer system, solves the scalability problem due to the bottleneck at the master node. However, in many real world scenarios the participating computing nodes cannot communicate directly due to administrative policies such as security restrictions. Thus, potential computing power is not accessible to accelerate the mining run. To solve this shortcoming, this work introduces a hierarchical topology of computing resources, which distributes the management over several levels and adapts to the natural structure of those multi-domain architectures. The most important aspect is the load balancing scheme, which has been designed and optimized for the hierarchical structure. The approach allows dynamic aggregation of heterogenous computing resources and is applied to wide area network scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on improving computer network management by the adoption of artificial intelligence techniques. A logical inference system has being devised to enable automated isolation, diagnosis, and even repair of network problems, thus enhancing the reliability, performance, and security of networks. We propose a distributed multi-agent architecture for network management, where a logical reasoner acts as an external managing entity capable of directing, coordinating, and stimulating actions in an active management architecture. The active networks technology represents the lower level layer which makes possible the deployment of code which implement teleo-reactive agents, distributed across the whole network. We adopt the Situation Calculus to define a network model and the Reactive Golog language to implement the logical reasoner. An active network management architecture is used by the reasoner to inject and execute operational tasks in the network. The integrated system collects the advantages coming from logical reasoning and network programmability, and provides a powerful system capable of performing high-level management tasks in order to deal with network fault.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In real world applications sequential algorithms of data mining and data exploration are often unsuitable for datasets with enormous size, high-dimensionality and complex data structure. Grid computing promises unprecedented opportunities for unlimited computing and storage resources. In this context there is the necessity to develop high performance distributed data mining algorithms. However, the computational complexity of the problem and the large amount of data to be explored often make the design of large scale applications particularly challenging. In this paper we present the first distributed formulation of a frequent subgraph mining algorithm for discriminative fragments of molecular compounds. Two distributed approaches have been developed and compared on the well known National Cancer Institute’s HIV-screening dataset. We present experimental results on a small-scale computing environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequent pattern discovery in structured data is receiving an increasing attention in many application areas of sciences. However, the computational complexity and the large amount of data to be explored often make the sequential algorithms unsuitable. In this context high performance distributed computing becomes a very interesting and promising approach. In this paper we present a parallel formulation of the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The application is characterized by a highly irregular tree-structured computation. No estimation is available for task workloads, which show a power-law distribution in a wide range. The proposed approach allows dynamic resource aggregation and provides fault and latency tolerance. These features make the distributed application suitable for multi-domain heterogeneous environments, such as computational Grids. The distributed application has been evaluated on the well known National Cancer Institute’s HIV-screening dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtual learning environments (VLEs) would appear to be particular effective in computer-supported collaborative work (CSCW) for active learning. Most research studies looking at computer-supported collaborative design have focused on either synchronous or asynchronous modes of communication, but near-synchronous working has received relatively little attention. Yet it could be argued that near-synchronous communication encourages creative, rhetorical and critical exchanges of ideas, building on each other’s contributions. Furthermore, although many researchers have carried out studies on collaborative design protocol, argumentation and constructive interaction, little is known about the interaction between drawing and dialogue in near-synchronous collaborative design. The paper reports the first stage of an investigation into the requirements for the design and development of interactive systems to support the learning of collaborative design activities. The aim of the study is to understand the collaborative design processes while sketching in a shared white board and audio conferencing media. Empirical data on design processes have been obtained from observation of seven sessions with groups of design students solving an interior space-planning problem of a lounge-diner in a virtual learning environment, Lyceum, an in-house software developed by the Open University to support its students in collaborative learning.