972 resultados para Distance measurement
Resumo:
The success or effectiveness for any aircraft design is a function of many trade-offs. Over the last 100 years of aircraft design these trade-offs have been optimized and dominant aircraft design philosophies have emerged. Pilotless aircraft (or uninhabited airborne systems, UAS) present new challenges in the optimization of their configuration. Recent developments in battery and motor technology have seen an upsurge in the utility and performance of electric powered aircraft. Thus, the opportunity to explore hybrid-electric aircraft powerplant configurations is compelling. This thesis considers the design of such a configuration from an overall propulsive, and energy efficiency perspective. A prototype system was constructed using a representative small UAS internal combustion engine (10cc methanol two-stroke) and a 600W brushless Direct current (BLDC) motor. These components were chosen to be representative of those that would be found on typical small UAS. The system was tested on a dynamometer in a wind-tunnel and the results show an improvement in overall propulsive efficiency of 17% when compared to a non-hybrid powerplant. In this case, the improvement results from the utilization of a larger propeller that the hybrid solution allows, which shows that general efficiency improvements are possible using hybrid configurations for aircraft propulsion. Additionally this approach provides new improvements in operational and mission flexibility (such as the provision of self-starting) which are outlined in the thesis. Specifically, the opportunity to use the windmilling propeller for energy regeneration was explored. It was found (in the prototype configuration) that significant power (60W) is recoverable in a steep dive, and although the efficiency of regeneration is low, the capability can allow several options for improved mission viability. The thesis concludes with the general statement that a hybrid powerplant improves the overall mission effectiveness and propulsive efficiency of small UAS.
Resumo:
The development of user expertise is a strategic imperative for organizations in hyper-competitive markets. This paper conceptualizes opreationalises and validates user expertise in contemporary Information Systems (IS) as a formative, multidimensional index. Such a validated and widely accepted index would facilitate progression of past research on user competence and efficacy of IS to complex contemporary IS, while at the same time providing a benchmark for organizations to track their user expertise. The validation involved three separate studies, including exploratory and confirmatory phases, using data from 244 respondents.
Resumo:
In this paper we apply port-Hamiltonian theory with the bondgraph modelling approach to the problem of formation control using partial measurements of relative positions. We present a control design that drives a group of vehicles to a desired formation without requiring inter-vehicle communications or global position and velocity measurements to be available. Our generic approach is applicable to any form of relative measurement between vehicles, but we specifically consider the important cases of relative bearings and relative distances. In the case of bearings, our theory closely relates to the field of image-based visual servo (IBVS) control. We present simulation results to support the developed theory.
Resumo:
The count-min sketch is a useful data structure for recording and estimating the frequency of string occurrences, such as passwords, in sub-linear space with high accuracy. However, it cannot be used to draw conclusions on groups of strings that are similar, for example close in Hamming distance. This paper introduces a variant of the count-min sketch which allows for estimating counts within a specified Hamming distance of the queried string. This variant can be used to prevent users from choosing popular passwords, like the original sketch, but it also allows for a more efficient method of analysing password statistics.
Resumo:
This paper discusses computer mediated distance learning on a Master's level course in the UK and student perceptions of this as a quality learning environment.
Resumo:
BACKGROUND: Conjunctival ultraviolet autofluorescence (UVAF) photography was developed to detect and characterise pre-clinical sunlight-induced UV damage. The reliability of this measurement and its relationship to outdoor activity are currently unknown. METHODS: 599 people aged 16-85 years in the cross-sectional Norfolk Island Eye Study were included in the validation study. 196 UVAF individual photographs (49 people) and 60 UVAF photographs (15 people) of Norfolk Island Eye Study participants were used for intra- and inter-observer reliability assessment, respectively. Conjunctival UVAF was measured using UV photography. UVAF area was calculated using computerised methods by one grader on two occasions (intra-observer analysis) or two graders (inter-observer analysis). Outdoor activity category, during summer and winter separately, was determined with a UV questionnaire. Total UVAF equalled the area measured in four conjunctival areas (nasal/temporal conjunctiva of right and left eyes). RESULTS: Intra-observer (ρ_c=0.988, 95% CI 0.967 to 0.996, p<0.001), and inter-observer concordance correlation coefficients (ρ_c=0.924, 95% CI 0.870 to 0.956, p<0.001) of total UVAF exceeded 0.900. When grouped according to 10 mm(2) total UVAF increments, intra- and inter-observer reliability was very good (κ=0.81) and good (κ=0.71), respectively. Increasing time outdoors was strongly with increasing total UVAF in summer and winter (p(trend) <0.001). CONCLUSION: Intra- and inter-observer reliability of conjunctival UVAF is high. In this population, UVAF correlates strongly with the authors' survey-based assessment of time spent outdoors.
Resumo:
The importance of applying unsaturated soil mechanics to geotechnical engineering design has been well understood. However, the consumption of time and the necessity for a specific laboratory testing apparatus when measuring unsaturated soil properties have limited the application of unsaturated soil mechanics theories in practice. Although methods for predicting unsaturated soil properties have been developed, the verification of these methods for a wide range of soil types is required in order to increase the confidence of practicing engineers in using these methods. In this study, a new permeameter was developed to measure the hydraulic conductivity of unsaturated soils using the steady-state method and directly measured suction (negative pore-water pressure) values. The apparatus is instrumented with two tensiometers for the direct measurement of suction during the tests. The apparatus can be used to obtain the hydraulic conductivity function of sandy soil over a low suction range (0-10 kPa). Firstly, the repeatability of the unsaturated hydraulic conductivity measurement, using the new permeameter, was verified by conducting tests on two identical sandy soil specimens and obtaining similar results. The hydraulic conductivity functions of the two sandy soils were then measured during the drying and wetting processes of the soils. A significant hysteresis was observed when the hydraulic conductivity was plotted against the suction. However, the hysteresis effects were not apparent when the conductivity was plotted against the volumetric water content. Furthermore, the measured unsaturated hydraulic conductivity functions were compared with predictions using three different predictive methods that are widely incorporated into numerical software. The results suggest that these predictive methods are capable of capturing the measured behavior with reasonable agreement.
Resumo:
In our laboratory we have developed a quantitative-polymerase chain reaction (Q-PCR) strategy to examine the differential expression of adenosine receptor (ADOR), A(1), A(2A), A(2B) and A(3), and estrogen receptors (ER) alpha and beta. Brain and uterine mRNA were first used to optimise specific amplification conditions prior to SYBR Green I real time analysis of receptor subtype expression. SYBR Green I provided a convenient and sensitive means of examining specific PCR amplification product in real time, and allowed the generation of standard curves from which relative receptor abundance could be determined. Real time Q-PCR analysis was then performed, to examine changes in receptor expression levels in brains of adult female Wistar rats 3-month post ovariectomy. Comparison with sham-operated age-matched control rats demonstrated both comparative and absolute-copy number changes in receptor levels. Evaluation of both analytical methods investigated 18S rRNA as an internal reference for comparative gene expression analysis in the brain. The results of this study revealed preferential repression of ADORA(2A) (>4-fold down) and consistent (>2-fold) down-regulation of ADORA(1), ADORA(3), and ER-beta, following ovariectomy. No change was found in ADORA(2B) or ER-alpha. Analysis of absolute copy number in this study revealed a correlation between receptor expression in response to ovariectomy, and relative receptor subtype abundance in the brain.
Resumo:
This research has successfully applied super-resolution and multiple modality fusion techniques to address the major challenges of human identification at a distance using face and iris. The outcome of the research is useful for security applications.
Resumo:
Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—“Properties of Nanoparticle Populations” of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 “Techniques for characterizing size distribution of airborne nanoparticles”. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.
Resumo:
A technique for analysing exhaust emission plumes from unmodified locomotives under real world conditions is described and applied to the task of characterizing plumes from railway trains servicing an Australian shipping port. The method utilizes the simultaneous measurement, downwind of the railway line, of the following pollutants; particle number, PM2.5 mass fraction, SO2, NOx and CO2, with the last of these being used as an indicator of fuel combustion. Emission factors are then derived, in terms of number of particles and mass of pollutant emitted per unit mass of fuel consumed. Particle number size distributions are also presented. The practical advantages of the method are discussed including the capacity to routinely collect emission factor data for passing trains and to thereby build up a comprehensive real world database for a wide range of pollutants. Samples from 56 train movements were collected, analyzed and presented. The quantitative results for emission factors are: EF(N)=(1.7±1)×1016 kg-1, EF(PM2.5)= (1.1±0.5) g·kg-1, EF(NOx)= (28±14) g·kg-1, and EF(SO2 )= (1.4±0.4) g·kg-1. The findings are compared with comparable previously published work. Statistically significant (p<α, α=0.05) correlations within the group of locomotives sampled were found between the emission factors for particle number and both SO2 and NOx.
Resumo:
Meal-Induced Thermogenesis (MIT) research findings are highly inconsistent, in part, due to the variety of durations and protocols used to measure MIT. We aimed to determine: 1) the proportion of a 6 h MIT response completed at 3, 4 and 5 h; 2) the associations between the shorter durations and the 6 h measure; 3) whether shorter durations improved the reproducibility of the measurement. MIT was measured in response to a 2410 KJ mixed composition meal in ten individuals (5 male, 5 female) on two occasions. Energy expenditure was measured continuously for 6 h post-meal using indirect calorimetry and MIT was calculated as the increase in energy expenditure above the pre-meal RMR. On average, 76%, 89%, and 96% of the 6 h MIT response was completed within 3, 4 and 5 h respectively, and the MIT at each of these time points was strongly correlated to the 6 h MIT (range for correlations, r = 0.990 to 0.998; p < 0.01). The between-day CV for the 6 h measurement was 33%, but was significantly lower after 3 h of measurement (CV = 26%, p = 0.02). Despite variability in the total MIT between days, the proportion of the MIT that was complete at 3, 4 and 5 h was reproducible (mean CV: 5%). While 6 h is typically required to measure the complete MIT response, 3 h measures provide sufficient information about the magnitude of the MIT response and may be applicable for measuring individuals on repeated occasions.
Resumo:
This research proposes a method for identifying user expertise in contemporary Information Systems (IS). It also proposes and develops a model for evaluating expertise. The aim of this study was to offer a common instrument that addresses the requirements of a contemporary Information System in a holistic way. This study demonstrates the application of the expertise construct in Information System evaluations, and shows that users of different expertise levels evaluate systems differently.
Resumo:
High-speed broadband internet access is widely recognised as a catalyst to social and economic development. However, the provision of broadband Internet services with the existing solutions to rural population, scattered over an extensive geographical area, remains both an economic and technical challenge. As a feasible solution, the Commonwealth Scientific and Industrial Research Organization (CSIRO) proposed a highly spectrally efficient, innovative and cost-effective fixed wireless broadband access technology, which uses analogue TV frequency spectrum and Multi-User MIMO (MUMIMO) technology with Orthogonal-Frequency-Division-Multiplexing (OFDM). MIMO systems have emerged as a promising solution for the increasing demand of higher data rates, better quality of service, and higher network capacity. However, the performance of MIMO systems can be significantly affected by different types of propagation environments e.g., indoor, outdoor urban, or outdoor rural and operating frequencies. For instance, large spectral efficiencies associated with MIMO systems, which assume a rich scattering environment in urban environments, may not be valid for all propagation environments, such as outdoor rural environments, due to the presence of less scatterer densities. Since this is the first time a MU-MIMO-OFDM fixed broadband wireless access solution is deployed in a rural environment, questions from both theoretical and practical standpoints arise; For example, what capacity gains are available for the proposed solution under realistic rural propagation conditions?. Currently, no comprehensive channel measurement and capacity analysis results are available for MU-MIMO-OFDM fixed broadband wireless access systems which employ large scale multiple antennas at the Access Point (AP) and analogue TV frequency spectrum in rural environments. Moreover, according to the literature, no deterministic MU-MIMO channel models exist that define rural wireless channels by accounting for terrain effects. This thesis fills the aforementioned knowledge gaps with channel measurements, channel modeling and comprehensive capacity analysis for MU-MIMO-OFDM fixed wireless broadband access systems in rural environments. For the first time, channel measurements were conducted in a rural farmland near Smithton, Tasmania using CSIRO's broadband wireless access solution. A novel deterministic MU-MIMO-OFDM channel model, which can be used for accurate performance prediction of rural MUMIMO channels with dominant Line-of-Sight (LoS) paths, was developed under this research. Results show that the proposed solution can achieve 43.7 bits/s/Hz at a Signal-to- Noise Ratio (SNR) of 20 dB in rural environments. Based on channel measurement results, this thesis verifies that the deterministic channel model accurately predicts channel capacity in rural environments with a Root Mean Square (RMS) error of 0.18 bits/s/Hz. Moreover, this study presents a comprehensive capacity analysis of rural MU-MIMOOFDM channels using experimental, simulated and theoretical models. Based on the validated deterministic model, further investigations on channel capacity and the eects of capacity variation, with different user distribution angles (θ) around the AP, were analysed. For instance, when SNR = 20dB, the capacity increases from 15.5 bits/s/Hz to 43.7 bits/s/Hz as θ increases from 10° to 360°. Strategies to mitigate these capacity degradation effects are also presented by employing a suitable user grouping method. Outcomes of this thesis have already been used by CSIRO scientists to determine optimum user distribution angles around the AP, and are of great significance for researchers and MU-MUMO-OFDM system developers to understand the advantages and potential capacity gains of MU-MIMO systems in rural environments. Also, results of this study are useful to further improve the performance of MU-MIMO-OFDM systems in rural environments. Ultimately, this knowledge contribution will be useful in delivering efficient, cost-effective high-speed wireless broadband systems that are tailor-made for rural environments, thus, improving the quality of life and economic prosperity of rural populations.