994 resultados para Dielectric resonator antennas. DRA. Ceramics. Lead zinc titanate. ZPT. Combustion. HFSS. Microwaves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrition is the basis of human physiological processes. Inadequate nutrition can lead to dysfunction in the metabolic chain links. One of the most important micronutrients is zinc, as evidenced by its wide range of carriers in the body. Zinc intake has a large margin in the current world population, may be 7 mg/d in the UK, reaching 15 mg/d in the U.S., although of course, the RDA's are set according to age, sex , physiological status (pregnancy, lactation, etc..), or disease. It is known that zinc is essential for the structure and function as well as DNA and enzymes, coenzymes, hormones and so on. Life is short, zinc, since the most rapidly absorbed and is transferred to tanks where it is stored, so the amount available zinc in the blood cannot be the amount "real". In this work we have done a mini-review of the passage of zinc by the body trying since their intake to their tour of the blood in both healthy and sick people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steroid hormone receptors activate specific gene transcription by binding as hormone-receptor complexes to short DNA enhancer-like elements termed hormone response elements (HREs). We have shown previously that a highly conserved 66 amino acid region of the oestrogen (ER) and glucocorticoid (GR) receptors, which corresponds to part of the receptor DNA binding domain (region C) is responsible for determining the specificity of target gene activation. This region contains two sub-regions (CI and CII) analogous to the 'zinc-fingers' of the transcription factor TFIIIA. We show here that CI and CII appear to be separate domains both involved in DNA binding. Furthermore, using chimaeric ERs in which either the first (N-terminal) (CI) or second (CII) 'zinc finger' region has been exchanged with that of the GR, indicates that it is the first 'zinc finger' which largely determines target gene specificity. We suggest that receptor recognition of the HRE is analogous to that of the helix-turn-helix DNA binding motif in that the receptor binds to DNA as a dimer with the first 'zinc finger' lying in the major groove recognizing one half of the palindromic HRE, and that protein-DNA interaction is stabilized through non-specific DNA binding and dimer interactions contributed by the second 'zinc finger'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. METHODS ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. RESULTS ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. CONCLUSIONS ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most available studies on lead smelter emissions deal with the environmental impact of outdoor particles, but only a few focus on air quality at workplaces. The objective of this study is to physically and chemically characterize the Pb-rich particles emitted at different workplaces in a lead recycling plant. A multi-scale characterization was conducted from bulk analysis to the level of individual particles, to assess the particles properties in relation with Pb speciation and availability. Process PM from various origins were sampled and then compared; namely Furnace and Refining PM respectively present in the smelter and at refinery workplaces, Emissions PM present in channeled emissions.These particles first differed by their morphology and size distribution, with finer particles found in emissions. Differences observed in chemical composition could be explained by the industrial processes. All PM contained the same major phases (Pb, PbS, PbO, PbSO4 and PbO·PbSO4) but differed on the nature and amount of minor phases. Due to high content in PM, Pb concentrations in the CaCl2 extractant reached relatively high values (40 mg.L-1). However, the ratios (soluble/total) of CaCl2 exchangeable Pb were relatively low (< 0.02%) in comparison with Cd (up to 18%). These results highlight the interest to assess the soluble fractions of all metals (minor and major) and discuss both total metal concentrations and ratios for risk evaluations. In most cases metal extractability increased with decreasing size of particles, in particular, lead exchangeability was highest for channeled emissions. Such type of study could help in the choice of targeted sanitary protection procedures and for further toxicological investigations. In the present context, particular attention is given to Emissions and Furnace PM. Moreover, exposure to other metals than Pb should be considered. [Authors]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Previously we reported on a premature termination mutation in SLC16A12 that leads to dominant juvenile cataract and renal glucosuria. To assess the mutation rate and genotype-phenotype correlations of SLC16A12 in juvenile or age-related forms of cataract, we performed a mutation screen in cataract patients. Methods: Clinical data of approximately 660 patients were collected, genomic DNA was isolated and analyzed. Exons 3 to 8 including flanking intron sequences of SLC16A12 were PCR amplified and DNA sequence was determined. Selected mutations were tested by cell culture assays, in silico analysis and RT-PCR. Results: We found sequence alterations at a rate of approximately 1/75 patients. None of them was found in 360 control alleles. Alterations affect splice site and regulatory region but most mutations caused an amino acid substitution. The majority of the coding region mutations maps to trans-membrane domains. One mutation located to the 5'UTR. It affects translational efficiency of SLC16A12. In addition, we identified a cataract-predisposing SNP in the non-coding region that causes allele-specific splicing of the 5'UTR region. Conclusions: Altered translational efficiency of the solute carrier SLC16A12 and its allele-specific splicing strongly support a model of challenged homeostasis to cause various forms of cataract. In addition, the pathogenic property of the here reported sequence alterations is supported by the lack of known sequence variations within the coding region of SLC16A12. Due to the relatively high mutation rate, we suggest to include SLC16A12 in diagnostic cataract screening. Generally, our data recommend the assessment of regulatory sequences for diagnostic purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cet article présente les résultats de la revue systématique: Singh M, Das RR. Zinc for the common cold. Cochrane Database of Systematic Reviews 2011, Issue 2, Art. No.: CD001364. DOI: 10.1002/14651858.CD001364.pub3. PMID: 21328251.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. In soils, these two minerals are either present in low amounts or are poorly available to plants. Consequently, worldwide agriculture has become dependent on external sources of Pi and Zn fertilizers to increase crop yields. However, this strategy is neither economically nor ecologically sustainable in the long term, particularly for Pi, which is a non-renewable resource. To date, research has emphasized the analysis of mineral nutrition considering each nutrient individually, and showed that Pi and Zn homeostasis is highly regulated in a complex process. Interestingly, numerous observations point to an unexpected interconnection between the homeostasis of the two nutrients. Nevertheless, despite their fundamental importance, the molecular bases and biological significance of these interactions remain largely unknown. Such interconnections can account for shortcomings of current agronomic models that typically focus on improving the assimilation of individual elements. Here, current knowledge on the regulation of the transport and signalling of Pi and Zn individually is reviewed, and then insights are provided on the recent progress made towards a better understanding of the Zn-Pi homeostasis interaction in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that exposure to low doses of lead causes long-lasting neurobehavioural deficits, but the cellular changes underlying these behavioural changes remain to be elucidated. A protective role of glial cells on neurons through lead sequestration by astrocytes has been proposed. The possible modulation of lead neurotoxicity by neuron-glia interactions was examined in three-dimensional cultures of foetal rat telencephalon. Mixed-brain cell cultures or cultures enriched in either neurons or glial cells were treated for 10 days with lead acetate (10(-6) m), a concentration below the limit of cytotoxicity. Intracellular lead content and cell type-specific enzyme activities were determined. It was found that in enriched cultures neurons stored more lead than glial cells, and each cell type alone stored more lead than in co-culture. Moreover, glial cells but not neurons were more affected by lead in enriched culture than in co-culture. These results show that neuron-glia interactions attenuate the cellular lead uptake and the glial susceptibility to lead, but they do not support the idea of a protective role of astrocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractFor a wide range of environmental, hydrological, and engineering applications there is a fast growing need for high-resolution imaging. In this context, waveform tomographic imaging of crosshole georadar data is a powerful method able to provide images of pertinent electrical properties in near-surface environments with unprecedented spatial resolution. In contrast, conventional ray-based tomographic methods, which consider only a very limited part of the recorded signal (first-arrival traveltimes and maximum first-cycle amplitudes), suffer from inherent limitations in resolution and may prove to be inadequate in complex environments. For a typical crosshole georadar survey the potential improvement in resolution when using waveform-based approaches instead of ray-based approaches is in the range of one order-of- magnitude. Moreover, the spatial resolution of waveform-based inversions is comparable to that of common logging methods. While in exploration seismology waveform tomographic imaging has become well established over the past two decades, it is comparably still underdeveloped in the georadar domain despite corresponding needs. Recently, different groups have presented finite-difference time-domain waveform inversion schemes for crosshole georadar data, which are adaptations and extensions of Tarantola's seminal nonlinear generalized least-squares approach developed for the seismic case. First applications of these new crosshole georadar waveform inversion schemes on synthetic and field data have shown promising results. However, there is little known about the limits and performance of such schemes in complex environments. To this end, the general motivation of my thesis is the evaluation of the robustness and limitations of waveform inversion algorithms for crosshole georadar data in order to apply such schemes to a wide range of real world problems.One crucial issue to making applicable and effective any waveform scheme to real-world crosshole georadar problems is the accurate estimation of the source wavelet, which is unknown in reality. Waveform inversion schemes for crosshole georadar data require forward simulations of the wavefield in order to iteratively solve the inverse problem. Therefore, accurate knowledge of the source wavelet is critically important for successful application of such schemes. Relatively small differences in the estimated source wavelet shape can lead to large differences in the resulting tomograms. In the first part of my thesis, I explore the viability and robustness of a relatively simple iterative deconvolution technique that incorporates the estimation of the source wavelet into the waveform inversion procedure rather than adding additional model parameters into the inversion problem. Extensive tests indicate that this source wavelet estimation technique is simple yet effective, and is able to provide remarkably accurate and robust estimates of the source wavelet in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity as well as significant ambient noise in the recorded data. Furthermore, our tests also indicate that the approach is insensitive to the phase characteristics of the starting wavelet, which is not the case when directly incorporating the wavelet estimation into the inverse problem.Another critical issue with crosshole georadar waveform inversion schemes which clearly needs to be investigated is the consequence of the common assumption of frequency- independent electromagnetic constitutive parameters. This is crucial since in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behaviour. In particular, in the presence of water, there is a wide body of evidence showing that the dielectric permittivity can be significantly frequency dependent over the GPR frequency range, due to a variety of relaxation processes. The second part of my thesis is therefore dedicated to the evaluation of the reconstruction limits of a non-dispersive crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. I show that the inversion algorithm, combined with the iterative deconvolution-based source wavelet estimation procedure that is partially able to account for the frequency-dependent effects through an "effective" wavelet, performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract en FrançaisCTCFL a d'abord été identifié comme un paralogue de la protéine ubiquitaire CTCF en raison de sa forte homologie entre leurs onze « zinc fingers », un domaine de liaison à l'ADN. Parmi ses nombreux rôles, la liaison des zinc fingers de CTCF à la région de contrôle de l'empreinte (ICR) maternelle non-méthylée Igf2/H19, contrôle l'expression empreinte (monoallélique) de H19 et IGF2 dans les cellules somatiques. La méthylation de l'ICR Igf2/H19 paternelle est nécessaire à l'expression empreinte de ces deux gènes. Bien que le mécanisme par lequel l'ICR est méthylé soit mal compris, il est connu que l'établissement de la méthylation se produit pendant le développement des cellules germinales mâles et que les ADN méthyltransférases de novo DNMT3A et DNMT3L sont essentiels. Par conséquent, CTCFL fournit un bon candidat pour un rôle dans la méthylation de l'ICR paternelle Igf2/H19 en raison de son expression restreinte à certains types de cellules où la méthylation de l'ICR a lieu (spermatogonies et spermatocytes) ainsi qu'en raison sa capacité à lier les ICR lgf2/HÎ9 dans ces cellules. Les premiers travaux expérimentaux de cette thèse portent sur le rôle possible des mutations de CTCFL chez les patients atteints du syndrome de Silver-Russell (SRS), où une diminution de la méthylation de l'ICR IGF2/H19 a été observée chez 60% d'entre eux. Admettant que CTCFL pourrait être muté chez ces patients, j'ai examiné les mutations possibles de CTCFL chez 35 d'entre eux par séquençage de l'ADN et analyse du nombre de copies d'exons. N'ayant trouvé aucune mutation chez ces patients, cela suggère que les mutations de CTCFL ne sont pas associées au SRS. Les travaux expérimentaux suivants ont porté sur les modifications post-traductionnelles de CTCFL par la protéine SU MO « small ubiquitin-like modifier » (SUMO). La modification de protéines par SU MO change les interactions avec d'autres molécules (ADN ou protéines). Comme CTCFL régule sans doute l'expression d'un certain nombre de gènes dans le cancer et que plusieurs facteurs de transcription sont régulés par SUMO, j'ai mené des expériences pour déterminer si CTCFL est sumoylé. En effet, j'ai observé que CTCFL est sumoylated in vitro et in vivo et j'ai déterminé les deux résidus d'attachement de SUMO aux lysines 181 et 645. Utilisant les mutants de CTCFL K181R et K645R ne pouvant pas être sumoylated, j'ai évalué les conséquences fonctionnelles de la modification par SUMO. Je n'ai trouvé aucun changement significatif dans la localisation subcellulaire, la demi-vie ou la liaison à l'ADN, mais ai constaté que la sumoylation module à la fois {'activation CTCFL-dépendante et la répression de l'expression génique. Il s'agit de la première modification post-traductionnelle décrite pour CTCFL et les conséquences possibles de cette modification sont discutées pour le cancer et les testicules normaux. Avec cette thèse, j'espère avoir ajouté des résultats importants à l'étude de CTCFL et donné quelques idées pour de futures recherches.AbstractJeremiah Bernier-Latmani, Institute of Pathology, University of Lausanne, CHUVCTCFL was first identified as a paralog of the ubiquitous protein CTCF because of high homology between their respective eleven zinc fingers, a DNA binding domain. Among its many roles, CTCF zinc finger-mediated binding to the unmethylated maternal Igf2/H19 imprinting control region (ICR), controls the imprinted (monoallelic) expression of Igf2 and H19 in somatic cells. Methylation of the paternal Igf2/H19 ICR is necessary for the imprinted expression of the two genes. Although the mechanism by which the ICR is methylated is incompletely understood, it is known that establishment of methylation occurs during male germ cell development and the de novo DNA methyltransferases DNMT3A and DNMT3L are essential. Therefore, CTCFL provided a good candidate to play a role in methylation of the paternal Igf2/H19 ICR because of its restricted expression to cell types where ICR methylation takes place (spermatogonia and spermatocytes) and its ability to bind the Igf2/H19 ICR in these cells. The first experimental work of this thesis investigated the possible role of CTCFL mutations in Silver-Russell syndrome (SRS) patients, where it has been observed that 60% of the patients have reduced methylation of the IGF2/HÎ9 ICR. Reasoning that CTCFL could be mutated in these patients, I screened 35 patients for mutations in CTCFL by DNA sequencing and exon copy number analysis, I did not find any mutations in these patients suggesting that mutations of CTCFL are not associated with SRS. The next experimental work of my thesis focused on posttranslational modification of CTCFL by small ubiquitin-like modifier (SUMO) protein. SUMO modification of proteins changes the interactions with other molecules (DNA or protein). As CTCFL arguably regulates the expression of a number of genes in cancer and many transcription factors are regulated by SUMO, I conducted experiments to assess whether CTCFL is sumoylated. I found that CTCFL is sumoylated in vitro and in vivo and determined the two residues of SUMO attachment to be lysines 181 and 645. Using K181R, K645R mutated CTCFL- which cannot be detected to be sumoylated-1 assessed the functional consequences of SUMO modification. I found no significant changes in subcellular localization, half-life or DNA binding, but found that sumoylation modulates both CTCFL-dependent activation and repression of gene expression. This is the first posttranslational modification described for CTCFL and possible consequences of this modification are discussed in both cancer and normal testis. With this thesis, I hope I have added important findings to the study of CTCFL and provide some ideas for future research.