961 resultados para Density functional theories (DFT)
Resumo:
Naturally occuring or man-made systems displaying periodic spatial modulations of their properties on a nanoscale constitute superlattices. Such modulated structures are important both as prototypes of simple nanotechnological devices and as particular examples of emerging spatial inhomogeneity in interacting many-electron systems. Here we investigate the effect different types of modulation of the system parameters have on the ground-state energy and the charge-density distribution of the system. The superlattices are described by the inhomogeneous attractive Hubbard model, and the calculations are performed by density-functional and density-matrix renormalization group techniques. We find that modulations in local electric potentials are much more effective in shaping the system's properties than modulations in the attractive on-site interaction. This is the same conclusion we previously [M.F. Silva, N.A. Lima, A.L. Malvezzi, K. Capelle, Phys. Rev. B 71 (2005) 125130.] obtained for repulsive interactions, suggesting that it is not an artifact of a specific state, but a general property of modulated structures. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Sm-doped PbTiO3 powder was synthesized by the polymeric precursor method, and was heat treated at different temperatures. The x-ray diffraction, photoluminescence, and UV-visible were used as a probe for the structural order degree short-, intermediate-, and long-range orders. Sm-3+ ions were used as markers of these order-disorder transformations in the PbTiO3 system. From the Rietveld refinement of the Sm-doped PbTiO3 x-ray diffraction data, structural models were obtained and analyzed by periodic ab initio quantum mechanical calculations using the CRYSTAL 98 package within the framework of density functional theory at the B3LYP level. This program can yield important information regarding the structural and electronic properties of crystalline and disordered structures. The experimental and theoretical results indicate the presence of the localized states in the band gap, due to the symmetry break, which is responsible for visible photoluminescence at room temperature in the disordered structure. (c) 2006 American Institute of Physics.
Resumo:
A joint experimental and theoretical study has been carried out to rationalize the results of visible photoluminescence measurements at room temperature on Sr1-xTiO3-x (ST) perovskite thin films. From the experimental side, ST thin films, x = 0 to 0.9, have been synthesized following soft chemical processing, and the corresponding photoluminescence properties have been measured. First principles quantum mechanical techniques, based on density functional theory at the B3LYP level, have been employed to study the electronic structure of a crystalline, stoichiometric (x = 0) ST-s model and a nonstoichiometric (SrO-deficient, x not equal 0) and structurally disordered ST-d model. The relevance of the present theoretical and experimental results of the photoluminescence behavior of ST is discussed. The optical spectra and the calculations indicate that the symmetry-breaking process on going from ST-s to ST-d creates electronic levels in the valence band. Moreover, an analysis of the Mulliken charge distribution reveals a charge gradient in the structure. These combined effects seem to be responsible for the photoluminescence behavior of deficient Sr1-xTiO3-x.
Resumo:
We calculate ground-state energies and density distributions of Hubbard superlattices characterized by periodic modulations of the on-site interaction and the on-site potential. Both density-matrix renormalization group and density-functional methods are employed and compared. We find that small variations in the on-site potential v(i) can simulate, cancel, or even overcompensate effects due to much larger variations in the on-site interaction U-i. Our findings highlight the importance of nanoscale spatial inhomogeneity in strongly correlated systems, and call for a reexamination of model calculations assuming spatial homogeneity.
Resumo:
Disordered and crystalline Mn-doped BaTiO3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn,) and disordered BTO:Mn (BTO:Mn-d) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Strong photoluminescent emission has been measured at room temperature for noncrystalline BaT'O-3 (BT) perovskite powders. A joint experimental and theoretical study has been carried out to rationalize this phenomenon. From the experimental side, BT powder samples have been synthesized following a soft chemical processing, their crystal structure has been confirmed by x-ray data and the corresponding photoluminescence (PL) properties have been measured. Only the structurally disordered samples present PL at room temperature. From the theoretical side, first-principles quantum-mechanical techniques, based on density-functional theory at the B3LYP level, have been employed to study the electronic structure of crystalline (BT-c) and asymmetric (BT-a) models. Theoretical and experimental results are found to be consistent and their confrontation leads to an interpretation of the PL apparition at room temperature in the structurally disordered powders.
Resumo:
Seselin, C14H12O3, is a coumarin which crystallizes in a monoclinic structure P2(1)/b(C-2h(5)) with four molecules per unit cell. In a Fourier-transform Raman spectroscopic study performed at room temperature, several normal modes were observed. Vibrational wavenumber and wave vector calculations using density functional theory were compared with experiment, which allowed the assignment of a number of normal modes of the crystal. Temperature-dependent Raman spectra were recorded between 10 and 300 K. No anomalies were observed in the phonon spectra, indicating that the monoclinic structure remains stable. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
A joint experimental and theoretical study has been carried out to rationalize for the first time the photoluminescence (PL) properties of disordered CaWO4 (CWO) thin films. From the experimental side, thin films of CWO have been synthesized following a soft chemical processing, their structure has been confirmed by X-ray diffraction data and corresponding PL properties have been measured using the 488 nm line of an argon ion laser. Although we observe PL at room temperature for the crystalline thin films, the structurally disordered samples present much more intense emission. From the theoretical side, first principles quantum mechanical calculations, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline (CWO-c) and asymmetric (CWO-a) periodic model. Electronic properties are analyzed in the light of the experimental results and their relevance in relation to the PL behavior of CWO is discussed. The symmetry breaking process on going from CWO-c to CWO-a creates localized electronic levels above the valence band and a negative charge transfer process takes place from threefold, WO3, to fourfold, WO4,. tungsten coordinations. The correlation of both effects seems to be responsible for the PL of amorphous CWO. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ultrafine PbZr0.20Ti0.80O3 was omorphized through high-energy mechanical milling. The structural evolution through the omorphization process was accompanied by various characterization techniques, such as X-ray diffraction, Fourier-transformed IR spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. A strong photoluminescence was measured at room temperature for amorphized PbZr0.20Ti0.80O3, and interpreted by means of high-level quantum mechanical calculations in the density functional theory frame-work. Three periodic models were used to represent the crystalline and amorphized PbZr0.20Ti0.80O3, and they allowed the calculation of electronic properties that are consistent with the experimental data and that explain the appearance of photoluminescence.
Resumo:
The structural and electronic properties of SrZrO3 selected surfaces were investigated by means of density functional theory applied to periodic calculations at B3LYP level. The relaxation effects for two symmetric and asymmetric terminations are analyzed. The electronic and energy band properties are discussed on the basis of band structure as well density of states. There is a more significant rumpling in the SrO as compared to the ZrO2 terminated surfaces. The calculated indirect gap is 4.856, 4.562, 4.637 eV for bulk, ZrO2 and asymmetric terminations, respectively. The gap becomes direct; 4.536 eV; for SrO termination. The contour in the (110) diagonal plane indicates a partial covalent character between Zr and 0 atoms for the SrO terminated surface. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper we report an experimental and theoretical study based on a periodic density functional investigation into selected compositions of Pb1-xCaxTiO3 (x=0.0, 0.25, 0.50, and 0.75). Based on our findings, we propose that the pseudocubic structure of these perovskites presents a long-range tendency for cubic symmetry, while the short-range displacements bring the solid solution to a tetragonal symmetry. The results are discussed in terms of x-ray diffraction, structural optimized parameters, Raman spectroscopy, band structure, density of states, Mulliken charge, and overlap population.
Resumo:
Crystalline BaWO4 (BWO) powder obtained by the polymeric precursor method was structurally disordered by means of high-energy mechanical milling. For the first time a strong and broad photoluminescence (PL) has been measured at room temperature for mechanically milled BWO powder and interpreted by ground-state quantum mechanical calculations in the density functional theory framework. Two periodic models have been studied; one representing the crystalline form and the other one representing the disordered BWO powder. These models allowed the calculation of electronic properties, which are consistent with the experimental results, showing that structural disorder in the lattice is an important condition to generate an intense and broad PL band. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article reports a theoretical study based on experimental results for barium zirconate, BaZrO3 (BZ) thin films, using periodic mechanic quantum calculations to analyze the symmetry change in a structural order-disorder simulation. Four periodic models were simulated using CRYSTAL98 code to represent the ordered and disordered BZ structures. The results were analyzed in terms of the energy level diagrams and atomic orbital distributions to explain and understand the BZ photoluminescence properties (PL) at room temperature for the disordered structure based on structural deformation and symmetry changes. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 111: 694-701, 2011