832 resultados para Data communication systems
Resumo:
This dissertation studies the caching of queries and how to cache in an efficient way, so that retrieving previously accessed data does not need any intermediary nodes between the data-source peer and the querying peer in super-peer P2P network. A precise algorithm was devised that demonstrated how queries can be deconstructed to provide greater flexibility for reusing their constituent elements. It showed how subsequent queries can make use of more than one previous query and any part of those queries to reconstruct direct data communication with one or more source peers that have supplied data previously. In effect, a new query can search and exploit the entire cached list of queries to construct the list of the data locations it requires that might match any locations previously accessed. The new method increases the likelihood of repeat queries being able to reuse earlier queries and provides a viable way of by-passing shared data indexes in structured networks. It could also increase the efficiency of unstructured networks by reducing traffic and the propensity for network flooding. In addition, performance evaluation for predicting query routing performance by using a UML sequence diagram is introduced. This new method of performance evaluation provides designers with information about when it is most beneficial to use caching and how the peer connections can optimize its exploitation.
Resumo:
Optical fiber materials exhibit a nonlinear response to strong electric fields, such as those of optical signals confined within the small fiber core. Fiber nonlinearity is an essential component in the design of the next generation of advanced optical communication systems, but its use is often avoided by engineers because of its intractability. The application of nonlinear technologies in fiber optics offers new opportunities for the design of photonic systems and devices. In this chapter, we make an overview of recent progress in mathematical theory and practical applications of temporal dissipative solitons and self-similar nonlinear structures in optical fiber systems. The design of all-optical high-speed signal processing devices, based on nonlinear dissipative structures, is discussed.
Resumo:
In traditional communication systems the transmission medium is considered as a given characteristic of the channel, which does not depend on the properties of the transmitter and the receiver. Recent experimental demonstrations of the feasibility of extending the laser cavity over the whole communication link connecting the two parties, forming an ultra-long fiber laser (UFL), have raised groundbreaking possibilities in communication and particularly in secure communications. Here, a 500 km long secure key distribution link based on Raman gain UFL is demonstrated. An error-free distribution of a random key with an average rate of 100 bps between the users is demonstrated and the key is shown to be unrecoverable to an eavesdropper employing either time or frequency domain passive attacks. In traditional communication systems the transmission medium is considered as a given characteristic of the channel, which does not depend on the properties of the transmitter and the receiver. Recent demonstrations of the feasibility of extending the laser cavity over the whole communication link connecting the two parties, forming an ultra-long fiber laser (UFL), have raised groundbreaking possibilities in communication. Here, a 500 km long secure key distribution link based on Raman gain UFL is demonstrated. © 2014 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.
Resumo:
Link adaptation is a critical component of IEEE 802.11 systems. In this paper, we analytically model a retransmission based Auto Rate Fallback (ARF) link adaptation algorithm. Both packet collisions and packet corruptions are modeled with the algorithm. The models can provide insights into the dynamics of the link adaptation algorithms and configuration of algorithms parameters. It is also observed that when the competing number of stations is high, packet collisions can largely affected the performance of ARF and make ARF operate with the lowest date rate, even when no packet corruption occur. This is in contrast to the existing assumption that packet collision will not affect the correct operation of ARF and can be ignored in the evaluation of ARF. The work presented in this paper can provide guidelines on configuring the link adaptation algorithms and designing new link adaptation algorithms for future high speed 802.11 systems. © 2006 IEEE.
Resumo:
This article proposes a frequency agile antenna whose operating frequency band can be switched. The design is based on a Vivaldi antenna. High-performance radio-frequency microelectromechanical system (RF-MEMS) switches are used to realize the 2.7 GHz and 3.9 GHz band switching. The low band starts from 2.33 GHz and works until 3.02 GHz and the high band ranges from 3.29 GHz up to 4.58 GHz. The average gains of the antenna at the low and high bands are 10.9 and 12.5 dBi, respectively. This high-gain frequency reconfigurable antenna could replace several narrowband antennas for reducing costs and space to support multiple communication systems, while maintaining good performance.
Resumo:
A multiplexer/demultiplexer for 100 GHz channel spacing based on chirped fibre Bragg gratings with different bandwidths and optical circulators is presented. The spectral characteristics, specifications and operation of these passive devices are described, showing its potential use in DWDM applications.
Resumo:
A detailed conceptual and a corresponding analytical traffic models of an overall (virtual) circuit switching telecommunication system are used. The models are relatively close to real-life communication systems with homogeneous terminals. In addition to Normalized and Pie-Models Ensue Model and Denial Traffic concept are proposed, as a parts of a technique for presentation and analysis of overall network traffic models functional structure; The ITU-T definitions for: fully routed, successful and effective attempts, and effective traffic are re-formulated. Definitions for fully routed traffic and successful traffic are proposed, because they are absent in the ITU-T recommendations; A definition of demand traffic (absent in ITU-T Recommendations) is proposed. For each definition are appointed: 1) the correspondent part of the conceptual model graphical presentation; 2) analytical equations, valid for mean values, in a stationary state. This allows real network traffic considered to be classified more precisely and shortly. The proposed definitions are applicable for every telecommunication system.
Resumo:
For the development of communication systems such as Internet of Things, integrating communication with power supplies is an attractive solution to reduce supply cost. This paper presents a novel method of power/signal dual modulation (PSDM), by which signal transmission is integrated with power conversion. This method takes advantage of the intrinsic ripple initiated in switch mode power supplies as signal carriers, by which cost-effective communications can be realized. The principles of PSDM are discussed, and two basic dual modulation methods (specifically PWM/FSK and PWM/PSK) are concluded. The key points of designing a PWM/FSK system, including topology selection, carrier shape, and carrier frequency, are discussed to provide theoretical guidelines. A practical signal modulation-demodulation method is given, and a prototype system provides experimental results to verify the effectiveness of the proposed solution.
Resumo:
Long-haul high speed optical transmission systems are significantly distorted by the interplay between the electronic chromatic dispersion (CD) equalization and the local oscillator (LO) laser phase noise, which leads to an effect of equalization enhanced phase noise (EEPN). The EEPN degrades the performance of optical communication systems severely with the increment of fiber dispersion, LO laser linewidth, symbol rate, and modulation format. In this paper, we present an analytical model for evaluating the performance of bit-error-rate (BER) versus signal-to-noise ratio (SNR) in the n-level phase shift keying (n-PSK) coherent transmission system employing differential carrier phase estimation (CPE), where the influence of EEPN is considered. Theoretical results based on this model have been investigated for the differential quadrature phase shift keying (DQPSK), the differential 8-PSK (D8PSK), and the differential 16-PSK (D16PSK) coherent transmission systems. The influence of EEPN on the BER performance in term of the fiber dispersion, the LO phase noise, the symbol rate, and the modulation format are analyzed in detail. The BER behaviors based on this analytical model achieve a good agreement with previously reported BER floors influenced by EEPN. Further simulations have also been carried out in the differential CPE considering EEPN. The results indicate that this analytical model can give an accurate prediction for the DQPSK system, and a leading-order approximation for the D8PSK and the D16PSK systems.
Resumo:
We propose an artificial neural network (ANN) equalizer for transmission performance enhancement of coherent optical OFDM (C-OOFDM) signals. The ANN equalizer showed more efficiency in combating both chromatic dispersion (CD) and single-mode fibre (SMF)-induced non-linearities compared to the least mean square (LMS). The equalizer can offer a 1.5 dB improvement in optical signal-to-noise ratio (OSNR) compared to LMS algorithm for 40 Gbit/s C-OOFDM signals when considering only CD. It is also revealed that ANN can double the transmission distance up to 320 km of SMF compared to the case of LMS, providing a nonlinearity tolerance improvement of ∼0.7 dB OSNR.
Resumo:
In optical communications, a high spectral efficiency can be realized by applying high order modulation formats such as 8QAM, 16QAM and 64QAM. However, depending on the system's requirements (bandwidth, performance and transmission distance), the maximum spectral efficiency may not be achievable with the regular 2m-array QAM formats. In this case, a hybrid modulation format, such as QPSK/8QAM, can provide an effective solution. In this work, we deliver the optimum design for single channel coherent optical orthogonal frequency division multiplexing systems with hybrid QPSK/8QAM modulation format. We also discuss a simple but effective strategy for applying hybrid QAMs for long-haul optical communications without considering sophisticated bit and power loading algorithms developed for wireless communications.
Resumo:
We explore the efficiency of various regeneration schemes in communication systems. We discuss new efficient schemes for multilevel phase and amplitude regeneration and illustrate it on example of 16-symbol constellations. © 2014 IEEE.
Resumo:
The distribution of the secret key is the weakest link of many data encryption systems. Quantum key distribution (QKD) schemes provide attractive solutions [1], however their implementation remains challenging and their range and bit-rate are limited. Moreover, practical QKD systems, employ real-life components and are, therefore, vulnerable to diverse attack schemes [2]. Ultra-Long fiber lasers (UFLs) have been drawing much attention recently because of their fundamentally different properties compared to conventional lasers as well as their unique applications [3]. Here, we demonstrate a 100Bps, practically secure key distribution, over a 500km link, employing Raman gain UFL. Fig. 1(a) depicts a schematic of the UFL system. Each user has an identical set of two wavelength selective mirrors centered at l0 and l 1. In order to exchange a key-bit, each user independently choose one of these mirrors and introduces it as a laser reflector at their end. If both users choose identical mirrors, a clear signal develops and the bits in these cases are discarded. However if they choose complementary mirrors, (1, 0 or 0, 1 states), the UFL remains below lasing threshold and no signal evolves. In these cases, an eavesdropper can only detect noise and is unable to determine the mirror choice of the users, where the choice of mirrors represent a single key bit (e.g. Alice's choice of mirror is the key-bit). These bits are kept and added to the key. The absence of signal in the secure states faxilitates fast measurements to distinguish between the non-secure and the secure states and to determine the key-bit in the later case, Sequentially reapeating the single bit exchange protocol generate the entire keys of any desirable length. © 2013 IEEE.
Resumo:
In this talk we investigate the usage of spectrally shaped amplified spontaneous emission (ASE) in order to emulate highly dispersed wavelength division multiplexed (WDM) signals in an optical transmission system. Such a technique offers various simplifications to large scale WDM experiments. Not only does it offer a reduction in transmitter complexity, removing the need for multiple source lasers, it potentially reduces the test and measurement complexity by requiring only the centre channel of a WDM system to be measured in order to estimate WDM worst case performance. The use of ASE as a test and measurement tool is well established in optical communication systems and several measurement techniques will be discussed [1, 2]. One of the most prevalent uses of ASE is in the measurement of receiver sensitivity where ASE is introduced in order to degrade the optical signal to noise ratio (OSNR) and measure the resulting bit error rate (BER) at the receiver. From an analytical point of view noise has been used to emulate system performance, the Gaussian Noise model is used as an estimate of highly dispersed signals and has had consider- able interest [3]. The work to be presented here extends the use of ASE by using it as a metric to emulate highly dispersed WDM signals and in the process reduce WDM transmitter complexity and receiver measurement time in a lab environment. Results thus far have indicated [2] that such a transmitter configuration is consistent with an AWGN model for transmission, with modulation format complexity and nonlinearities playing a key role in estimating the performance of systems utilising the ASE channel emulation technique. We conclude this work by investigating techniques capable of characterising the nonlinear and damage limits of optical fibres and the resultant information capacity limits. REFERENCES McCarthy, M. E., N. Mac Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats," 2014 European Conference on IEEE Optical Communication (ECOC), 2014. 2. Ellis, A., N. Mac Suibhne, F. Gunning, and S. Sygletos, “Expressions for the nonlinear trans- mission performance of multi-mode optical fiber," Opt. Express, Vol. 21, 22834{22846, 2013. Vacondio, F., O. Rival, C. Simonneau, E. Grellier, A. Bononi, L. Lorcy, J. Antona, and S. Bigo, “On nonlinear distortions of highly dispersive optical coherent systems," Opt. Express, Vol. 20, 1022-1032, 2012.