998 resultados para Damage scenarios


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The micro-irradiation technique continues to be highly relevant to a number of radiobiological studies in vitro. In particular, studies of the bystander effect show that direct damage to cells is not the only trigger for radiation-induced effects, but that unirradiated cells can also respond to signals from irradiated neighbours. Furthermore, the bystander response can be initiated even when no energy is deposited in the genomic DNA of the irradiated cell (i.e. by targeting just the cytoplasm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerable controversy still exists as to whether electric and magnetic fields (MF) at extremely low frequencies are genotoxic to humans. The aim of this study was to test the ability of alternating magnetic fields to induce DNA and chromosomal damage in primary human fibroblasts. Single- and double-strand breaks were quantified using the alkaline comet assay and the gammaH2AX-foci assay, respectively. Chromosomal damage was assayed for unstable aberrations, sister chromatid exchange and micronuclei. Cells were exposed to switching fields - 5min on, 10min off - for 15h over the range 50-1000microT. Exposure to ionizing radiation was used as a positive-effect calibration. In this study two separate MF exposure systems were used. One was based on a custom-built solenoid coil system and the other on a commercial system almost identical to that used in previous studies by the EU REFLEX programme. With neither system could DNA damage or chromosomal damage be detected as a result of exposure of fibroblasts to switching MF. The sensitive gammaH2AX assay could also not detect significant DNA damage in the MF-exposed fibroblasts, although the minimum threshold for this assay was equivalent to an X-ray dose of 0.025Gy. Therefore, with comparable MF parameters employed, this study could not confirm previous studies reporting significant effects for both the alkaline and neutral comet assays and chromosomal aberration induction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The comet assay is a sensitive tool for estimation of DNA damage and repair at the cellular level, requiring only a very small number of cells. In comparing the levels of damage or repair in different cell samples, it is possible that small experimental effects could be confounded by different cell cycle states in the samples examined, if sensitivity to DNA damage, and repair capacity, varies with the cell cycle. We assessed this by arresting HeLa cells in various cell cycle stages and then exposing them to ionizing radiation. Unirradiated cells demonstrated significant differences in strand break levels measured by the comet assay (predominantly single-strand breaks) at different cell cycle stages, increasing from G1 into S and falling again in G2. Over and above this variation in endogenous strand break levels, a significant difference in susceptibility to breaks induced by 3.5 Gy ionizing radiation was also evident in different cell cycle phases. Levels of induced DNA damage fluctuate throughout the cycle, with cells in G1 showing slightly lower levels of damage than an asynchronous population. Damage increases as cells progress through S phase before falling again towards the end of S phase and reaching lowest levels in M phase. The results from repair experiments (where cells were allowed to repair for 10 min after exposure to ionizing radiation) also showed differences throughout the cell cycle with G1-phase cells apparently being the most efficient at repair and M-phase cells the least efficient. We suggest, therefore, that in experiments where small differences in DNA damage and repair are to be investigated with the comet assay, it may be desirable to arrest cells in a specific stage of the cell cycle or to allow for differential cycle distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Neuronal loss in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), correlates with permanent neurological dysfunction. Current MS therapies have limited the ability to prevent neuronal damage. Methods: We examined whether oral therapy with SRT501, a pharmaceutical grade formulation of resveratrol, reduces neuronal loss during relapsing-remitting EAE. Resveratrol activates SIRT1, an NAD-dependent deacetylase that promotes mitochondrial function. Results: Oral SRT501 prevented neuronal loss during optic neuritis, an inflammatory optic nerve lesion in MS and EAE. SRT501 also suppressed neurological dysfunction during EAE remission, and spinal cords from SRT501-treated mice had significantly higher axonal density than vehicle-treated mice. Similar neuroprotection was mediated by SRT1720, another SIRT1-activating compound; and sirtinol, an SIRT1 inhibitor, attenuated SRT501 neuroprotective effects. SIRT1 activators did not prevent inflammation. Conclusions: These studies demonstrate that SRT501 attenuates neuronal damage and neurological dysfunction in EAE by a mechanism involving SIRT1 activation. SIRT1 activators are a potential oral therapy in MS. © 2010 by North American Neuro-Ophthalmology Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Sperm DNA damage shows great promise as a biomarker of infertility. The study aim is to determine the usefulness of DNA fragmentation (DF), including modified bases (MB), to predict assisted reproduction treatment (ART) outcomes. Methods: DF in 360 couples (230 IVF and 130 ICSI) was measured by the alkaline Comet assay in semen and in sperm following density gradient centrifugation (DGC) and compared with fertilization rate (FR), embryo cumulative scores (ECS1) for the total number of embryos/treatment, embryos transferred (ECS2), clinical pregnancy (CP) and spontaneous pregnancy loss. MB were also measured using formamidopyrimidine DNA glycosylase to convert them into strand breaks. Results: In IVF, FR and ECS decreased as DF increased in both semen and DGC sperm, and couples who failed to achieve a CP had higher DF than successful couples (+12.2 semen, P = 0.004; +9.9 DGC sperm, P = 0.010). When MB were added to existing strand breaks, total DF was markedly higher (+17.1 semen, P = 0.009 and +13.8 DGC sperm, P = 0.045). DF was not associated with FR, ECS or CP in either semen or DGC sperm following ISCI. In contrast, by including MB, there was significantly more DNA damage (+16.8 semen, P = 0.008 and +15.5 DGC sperm, P = 0.024) in the group who did not achieve CP. Conclusion: SDF can predict ART outcome for IVF. Converting MB into further DNA strand breaks increased the test sensitivity, giving negative correlations between DF and CP for ICSI as well as IVF. © 2010 The Author.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study identifies ataxia-telangiectasia mutated (ATM) as a further component of the complex signaling network of radiation-induced DNA damage in nontargeted bystander cells downstream of ataxia-telangiectasia and Rad3-related (ATR) and provides a rationale for molecular targeted modulation of these effects. In directly irradiated cells, ATR, ATM, and DNA-dependent protein kinase (DNA-PK) deficiency resulted in reduced cell survival as predicted by the known important role of these proteins in sensing DNA damage. A decrease in clonogenic survival was also observed in ATR/ATM/DNA-PK–proficient, nonirradiated bystander cells, but this effect was completely abrogated in ATR and ATM but not DNA-PK–deficient bystander cells. ATM activation in bystander cells was found to be dependent on ATR function. Furthermore, the induction and colocalization of ATR, 53BP1, ATM-S1981P, p21, and BRCA1 foci in nontargeted cells was shown, suggesting their involvement in bystander DNA damage signaling and providing additional potential targets for its modulation. 53BP1 bystander foci were induced in an ATR-dependent manner predominantly in S-phase cells, similar to ?H2AX foci induction. In conclusion, these results provide a rationale for the differential modulation of targeted and nontargeted effects of radiation.