991 resultados para DIPHOSPHATE DEPENDENT ENZYME
Resumo:
Type I diabetes mellitus (insulin-dependent DM = IDDM) is a chronic disease characterized by specific destruction of pancreatic beta cells, resulting in an absolute lack of insulin. Immune mechanisms, genetic susceptibility, and environmental factors are all implicated in the pathogenesis of Type 1 diabetes. This study was aimed at determining the efficiency of cytokines, natural killer (NK) cells in the pathophysiology of IDDM. Therefore, we evaluated the plasma levels of cytokines by specific enzyme-linked immunosorbent assay (ELISA) and the cytotoxicity activity of NK cells by anti-candididal index in rats with type I diabetes. We found that the cytotoxicity activity of NK cells in IDDM groups significantly decreased compared to the control groups. The levels of interferon-g (IFN-g) in IDDM groups were slightly higher than in healthy controls. These results indicate that the changes of T H1 type cytokines such as IFN-g and NK cell activity can play a role in the etiology of IDDM. The data may provide new strategies for the treatment of IDDM.
Resumo:
Platelet-activating factor (PAF) is one of the most potent lipid mediators involved in inflammatory events. The acetyl group at the sn-2 position of its glycerol backbone is essential for its biological activity. Deacetylation induces the formation of the inactive metabolite lyso-PAF. This deacetylation reaction is catalyzed by PAF-acetylhydrolase (PAF-AH), a calcium independent phospholipase A2 that also degrades a family of PAF-like oxidized phospholipids with short sn-2 residues. Biochemical and enzymological evaluations revealed that at least three types of PAF-AH exist in mammals, namely the intracellular types I and II and a plasma type. Many observations indicate that plasma PAF AH terminates signals by PAF and oxidized PAF-like lipids and thereby regulates inflammatory responses. In this review, we will focus on the potential of PAF-AH as a modulator of diseases of dysregulated inflammation.
Resumo:
Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR) α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe(-/-) mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.
Resumo:
A dot enzyme-linked immunosorbent assay (dot-ELISA) was standardized using excretory-secretory antigens of Toxocara canis for the rapid immunodiagnosis of human toxocariasis. Thirty patients with clinical signs of toxocariasis, 20 cases with other parasitic diseases, and 40 healthy subjects were tested. A total of 0.2 ng of antigen per dot, serum dilution of 1:160 and dilution conjugate of 1:1000 were found optimal. The sensitivity and specificity of the assay were 100 and 95%, respectively. Comparable sensitivity of dot-ELISA and the standard ELISA was obtained, but only 3 cross-reactions occurred in the dot-ELISA, compared with 6 in the standard ELISA. Dot-ELISA is simple to perform, rapid, and low cost. Large-scale screening studies should be done to evaluate its usefulness under field conditions.
Resumo:
The Xenopus vitellogenin (vit) gene B1 estrogen-inducible enhancer is formed by two closely adjacent 13 bp imperfect palindromic estrogen-responsive elements (EREs), i.e. ERE-2 and ERE-1, having one and two base substitutions respectively, when compared to the perfect palindromic consensus ERE (GGTCANNNTGACC). Gene transfer experiments indicate that these degenerated elements, on their own, have a low or no regulatory capacity at all, but in vivo act together synergistically to confer high receptor- and hormone-dependent transcription activation to the heterologous HSV thymidine kinase promoter. Thus, the DNA region upstream of the vitB1 gene comprising these two imperfect EREs separated by 7 bp, was called the vitB1 estrogen-responsive unit (vitB1 ERU). Using in vitro protein-DNA interaction techniques, we demonstrate that estrogen receptor dimers bind cooperatively to the imperfect EREs of the vitB1 ERU. Binding of a first receptor dimer to the more conserved ERE-2 increases approximately 4- to 8-fold the binding affinity of the receptor to the adjacent less conserved ERE-1. Thus, we suggest that the observed synergistic estrogen-dependent transcription activation conferred by the pair of hormone-responsive DNA elements of the vit B1 ERU is the result of cooperative binding of two estrogen receptor dimers to these two adjacent imperfect EREs.
Resumo:
Indirect enzyme-linked immunosorbent assays (ELISAs) based on recombinant major surface protein 5 (rMSP5) and initial body (IB) antigens from a Brazilian isolate of Anaplasma marginale were developed to detect antibodies against this rickettsia in cattle. Both tests showed the same sensitivity (98.2%) and specificities (100% for rMSP5 and 93.8% for IB ELISA) which did not differ statistically. No cross-reactions were detected with Babesia bigemina antibodies, but 5 (rMSP5 ELISA) to 15% (IB ELISA) of cross-reactions were detected with B. bovis antibodies. However, such difference was not statistically significant. Prevalences of seropositive crossbred beef cattle raised extensively in Miranda county, state of Mato Grosso do Sul, Brazil, were 78.1% by rMSP5 ELISA and 79.7% by IB ELISA. In the analysis of sera from dairy calves naturally-infected with A. marginale, the dynamics of antibody production was very similar between both tests, with maternal antibodies reaching the lowest levels at 15-30 days, followed by an increase in the mean optical densities in both ELISAs, suggesting the development of active immunity against A. marginale. Results showed that all calves were seropositive by one-year old, characterizing a situation of enzootic stability. The similar performances of the ELISAs suggest that both tests can be used in epidemiological surveys for detection of antibodies to A. marginale in cattle.
Resumo:
There are data indicating that the distribution of Trypanosoma vivax in the Brazilian territory is expanding with potential to reach other areas, where the vectors are present. The detection of anti-trypanosomal antibodies in serum provides important information of the trypanosomal status in cattle herds. For this reason, an enzyme-linked immunosorbent assay (Tv-ELISA-Ab) with crude antigen from one Brazilian isolate of T. vivax was developed and evaluated. The sensitivity and specificity were respectively 97.6 and 96.9%. In the evaluation of cross-reactions, three calves inoculated with T. evansi trypimastigotes blood forms showed optical densities (OD) under the cut-off during the whole experimental period, except one at 45 days post-inoculation. With relation to Babesia bovis, B. bigemina, and Anaplasma marginale, which are endemic hemoparasites in the studied area, the cross-reactions were shown to be 5.7, 5.3, and 1.1%, respectively. The first serological survey of Pantanal and state of Pará showed that T. vivax is widespread, although regions within both areas had significantly different prevalences. Therefore, this Tv-ELISA-Ab may be a more appropriate test for epidemiological studies in developing countries because the diagnostic laboratories in most countries may be able to perform an ELISA, which is not true for polymerase chain reaction.
Resumo:
Measuring antibiotic-induced killing relies on time-consuming biological tests. The firefly luciferase gene (luc) was successfully used as a reporter gene to assess antibiotic efficacy rapidly in slow-growing Mycobacterium tuberculosis. We tested whether luc expression could also provide a rapid evaluation of bactericidal drugs in Streptococcus gordonii. The suicide vectors pFW5luc and a modified version of pJDC9 carrying a promoterless luc gene were used to construct transcriptional-fusion mutants. One mutant susceptible to penicillin-induced killing (LMI2) and three penicillin-tolerant derivatives (LMI103, LMI104, and LMI105) producing luciferase under independent streptococcal promoters were tested. The correlation between antibiotic-induced killing and luminescence was determined with mechanistically unrelated drugs. Chloramphenicol (20 times the MIC) inhibited bacterial growth. In parallel, luciferase stopped increasing and remained stable, as determined by luminescence and Western blots. Ciprofloxacin (200 times the MIC) rapidly killed 1.5 log10 CFU/ml in 2-4 hr. Luminescence decreased simultaneously by 10-fold. In contrast, penicillin (200 times the MIC) gave discordant results. Although killing was slow (< or = 0.5 log10 CFU/ml in 2 hr), luminescence dropped abruptly by 50-100-times in the same time. Inactivating penicillin with penicillinase restored luminescence, irrespective of viable counts. This was not due to altered luciferase expression or stability, suggesting some kind of post-translational modification. Luciferase shares homology with aminoacyl-tRNA synthetase and acyl-CoA ligase, which might be regulated by macromolecule synthesis and hence affected in penicillin-inhibited cells. Because of resemblance, luciferase might be down-regulated simultaneously. Luminescence cannot be universally used to predict antibiotic-induced killing. Thus, introducing reporter enzymes sharing mechanistic similarities with normal metabolic reactions might reveal other effects than those expected.
Resumo:
Available evidence suggests that the antischistosomal drug oxamniquine is converted to a reactive ester by a schistosome enzyme that is missing in drug-resistant parasites. This study presents data supporting the idea that the active ester is a sulfate and the activating enzyme is a sulfotransferase. Evidence comes from the fact that the parasite extract loses its activating capability upon dialysis, implying the requirement of some dialyzable cofactor. The addition of the sulfate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) restored activity of the dialyzate, a strong indication that a sulfotransferase is probably involved. Classical sulfotransferase substrates like beta-estradiol and quercetin competitively inhibited the activation of oxamniquine. Furthermore, these substrates could be sulfonated in vitro using an extract of sensitive (but not resistant) schistosomes. Gel filtration analysis showed that the activating factor eluted in a fraction corresponding to a molecular mass of about 32 kDa, which is the average size of typical sulfotransferase subunits. Ion exchange and affinity chromatography confirmed the sulfotransferase nature of the enzyme. Putative sulfotransferases present in schistosome databases are being examined for their possible role as oxamniquine activators.
Resumo:
OBJECTIVES: To determine whether nalmefene combined with psychosocial support is cost-effective compared with psychosocial support alone for reducing alcohol consumption in alcohol-dependent patients with high/very high drinking risk levels (DRLs) as defined by the WHO, and to evaluate the public health benefit of reducing harmful alcohol-attributable diseases, injuries and deaths. DESIGN: Decision modelling using Markov chains compared costs and effects over 5 years. SETTING: The analysis was from the perspective of the National Health Service (NHS) in England and Wales. PARTICIPANTS: The model considered the licensed population for nalmefene, specifically adults with both alcohol dependence and high/very high DRLs, who do not require immediate detoxification and who continue to have high/very high DRLs after initial assessment. DATA SOURCES: We modelled treatment effect using data from three clinical trials for nalmefene (ESENSE 1 (NCT00811720), ESENSE 2 (NCT00812461) and SENSE (NCT00811941)). Baseline characteristics of the model population, treatment resource utilisation and utilities were from these trials. We estimated the number of alcohol-attributable events occurring at different levels of alcohol consumption based on published epidemiological risk-relation studies. Health-related costs were from UK sources. MAIN OUTCOME MEASURES: We measured incremental cost per quality-adjusted life year (QALY) gained and number of alcohol-attributable harmful events avoided. RESULTS: Nalmefene in combination with psychosocial support had an incremental cost-effectiveness ratio (ICER) of £5204 per QALY gained, and was therefore cost-effective at the £20,000 per QALY gained decision threshold. Sensitivity analyses showed that the conclusion was robust. Nalmefene plus psychosocial support led to the avoidance of 7179 alcohol-attributable diseases/injuries and 309 deaths per 100,000 patients compared to psychosocial support alone over the course of 5 years. CONCLUSIONS: Nalmefene can be seen as a cost-effective treatment for alcohol dependence, with substantial public health benefits. TRIAL REGISTRATION NUMBERS: This cost-effectiveness analysis was developed based on data from three randomised clinical trials: ESENSE 1 (NCT00811720), ESENSE 2 (NCT00812461) and SENSE (NCT00811941).
Resumo:
In Plasmodium falciparum, the formation of isopentenyl diphosphate and dimethylallyl diphosphate, central intermediates in the biosynthesis of isoprenoids, occurs via the methylerythritol phosphate (MEP) pathway. Fosmidomycin is a specific inhibitor of the second enzyme of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate reductoisomerase. We analyzed the effect of fosmidomycin on the levels of each intermediate and its metabolic requirement for the isoprenoid biosynthesis, such as dolichols and ubiquinones, throughout the intraerythrocytic cycle of P. falciparum. The steady-state RNA levels of the MEP pathway-associated genes were quantified by real-time polymerase chain reaction and correlated with the related metabolite levels. Our results indicate that MEP pathway metabolite peak precede maximum transcript abundance during the intraerythrocytic cycle. Fosmidomycin-treatment resulted in a decrease of the intermediate levels in the MEP pathway as well as in ubiquinone and dolichol biosynthesis. The MEP pathway associated transcripts were modestly altered by the drug, indicating that the parasite is not strongly responsive at the transcriptional level. This is the first study that compares the effect of fosmidomycin on the metabolic and transcript profiles in P. falciparum, which has only the MEP pathway for isoprenoid biosynthesis.
Resumo:
Thirty-nine patients with various types of hypertension were treated by chronic blockage of the angiotensin converting enzyme, i.e. by twice daily administration of captopril, 50 to 200 mg p.o. The blood pressure reduction observed 1 hour following administration of the inhibitor was directly related to the baseline plasma renin activity (r=- 0.67, p < 0.001). Whenever blockade of the renin system alone did not lower blood pressure to normal levels additional sodium subtraction brought it under control. With the renin system neutralized, blood pressure becomes exquisitely sensitive to changes in sodium balance. Diuretics seem to preserve optimal natriuretic efficacy despite blood pressure reduction, probably because aldosterone levels are reduced and renal blood flow increases. Blockade of the renin system together with individually tailored salt subtraction provides an attractive new approach to long-term treatment of clinical hypertension.
Resumo:
To assess the effectiveness of a multidisciplinary evaluation and referral process in a prospective cohort of general hospital patients with alcohol dependence. Alcohol-dependent patients were identified in the wards of the general hospital and its primary care center. They were evaluated and then referred to treatment by a multidisciplinary team; those patients who accepted to participate in this cohort study were consecutively included and followed for 6 months. Not included patients were lost for follow-up, whereas all included patients were assessed at time of inclusion, 2 and 6 months later by a research psychologist in order to collect standardized baseline patients' characteristics, process salient features and patients outcomes (defined as treatment adherence and abstinence). Multidisciplinary evaluation and therapeutic referral was feasible and effective, with a success rate of 43%for treatment adherence and 28%for abstinence at 6 months. Among patients' characteristics, predictors of success were an age over 45, not living alone, being employed and being motivated to treatment (RAATE-A score < 18), whereas successful process characteristics included detoxification of the patient at time of referral and a full multidisciplinary referral meeting. This multidisciplinary model of evaluation and referral of alcohol dependent patients of a general hospital had a satisfactory level of effectiveness. Predictors of success and failure allow to identify subsets of patients for whom new strategies of motivation and treatment referral should be designed.
Resumo:
Transfusion-transmitted malaria is rare, but it may produce severe problem in the safety of blood transfusion due to the lack of reliable procedure to evaluate donors potentially exposed to malaria. Here, we evaluated a new enzyme-linked immunosorbent assay malaria antibody test (ELISA malaria antibody test, DiaMed, Switzerland) to detect antibodies to Plasmodium vivax (the indigenous malaria) in the blood samples in the Republic of Korea (ROK). Blood samples of four groups were obtained and analyzed; 100 samples from P.vivax infected patients, 35 from recovery patients, 366 from normal healthy individuals, and 325 from domestic travelers of non-endemic areas residents to risky areas of ROK. P.vivax antibody levels by ELISA were then compared to the results from microscopic examination and polymerase chain reaction (PCR) test. As a result, the ELISA malaria antibody test had a clinical sensitivity of 53.0% and a clinical specificity of 94.0% for P.vivax. Twenty out of 325 domestic travelers (6.2%) were reactive and 28 cases (8.6%) were doubtful. Of the reactive and doubtful cases, only two were confirmed as acute malaria by both microscopy and PCR test. Thus we found that the ELISA malaria antibody test was insufficiently sensitive for blood screening of P.vivax in ROK.