817 resultados para DEFORMATION POTENTIALS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An alternative theoretical method to simulate the structural deformation induced by Mn-doping in BaTiO3 is proposed. The periodic quantum-mechanical method is based on density functional theory at B3LYP level. The structural models were obtained from Rietveld refinement of the undoped and Mn doped BaTiO3 X-ray diffraction data. This modelization gives access to the dopant General effect on the electronic structure. In fact, the influence of the doing element itself on the electronic configuration is barely local: therefore, it is not included in the simulation. The simplicity of the model makes it available for working within a wide range of materials.(C) 2004 Published bv Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A hiperbilirrubinemia é tóxica às vias auditivas e ao sistema nervoso central, deixando sequelas como surdez e encefalopatia. OBJETIVOS: avaliar a audição de neonatos portadores de hiperbilirrubinemia, utilizando-se a pesquisa das emissões otoacústicas evocadas transientes (EOAET) e dos potenciais evocados auditivos do tronco encefálico (PEATE). Estudo prospectivo. CASUÍSTICA E MÉTODOS: Constituíram-se dois grupos: GI (n-25), neonatos com hiperbilirrubinemia; GII (n-22), neonatos sem hiperbilirrubinemia e sem fatores de risco para surdez. Todos os neonatos tinham até 60 dias de vida e foram submetidos à EOAET e ao PEATE. RESULTADOS: 12 neonatos de GI e 10 de GII eram meninas e 13 de GI e 12 de GII eram meninos. As EOAET estavam presentes em todas as crianças, porém com amplitudes menores em GI, especialmente nas frequências de 2 e 3KHz (p < 0,05). No PEATE, observou-se discreto prolongamento de PV e de LI-V em GI. As alterações observadas nesses testes não se correlacionaram aos níveis séricos da bilirrubinemia. CONCLUSÕES: em neonatos portadores de hiperbilirrubinemia, menores amplitudes das EOAET e discreto prolongamento de PV e de LI-V foram constatados indicando comprometimento coclear e retrococlear das vias auditivas, salientando-se a importância da utilização e da interpretação minuciosa de ambos os testes nessas avaliações.
Resumo:
Naturally occuring or man-made systems displaying periodic spatial modulations of their properties on a nanoscale constitute superlattices. Such modulated structures are important both as prototypes of simple nanotechnological devices and as particular examples of emerging spatial inhomogeneity in interacting many-electron systems. Here we investigate the effect different types of modulation of the system parameters have on the ground-state energy and the charge-density distribution of the system. The superlattices are described by the inhomogeneous attractive Hubbard model, and the calculations are performed by density-functional and density-matrix renormalization group techniques. We find that modulations in local electric potentials are much more effective in shaping the system's properties than modulations in the attractive on-site interaction. This is the same conclusion we previously [M.F. Silva, N.A. Lima, A.L. Malvezzi, K. Capelle, Phys. Rev. B 71 (2005) 125130.] obtained for repulsive interactions, suggesting that it is not an artifact of a specific state, but a general property of modulated structures. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Statement of problem. Two problems found in prostheses with resilient liners are bond failure to the acrylic resin base and increased permanent deformation due to material aging.Purpose. This in vitro study evaluated the effect of varying amounts of thermal cycling on bond strength and permanent deformation of 2 resilient denture liners bonded to an acrylic resin base.Material and methods. Plasticized acrylic resin (PermaSoft) or silicone (Softliner) resilient lining materials were processed to a heat-polymerized acrylic resin (QC-20). One hundred rectangular specimens (10 X 10-mm(2) cross-sectional area) and 100 cylindrically-shaped specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Specimens were divided into 9 test groups (n=10) and were thermal cycled for 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, and 4000 cycles. Control specimens (n=10) were stored for 24 hours in water at 37degreesC. Mean bond strength, expressed as stress at failure (MPa), was determined with a tensile test using a universal testing machine at a crosshead speed of 5 mm/min. Analysis of failure mode, expressed as a percent (%), was recorded as either cohesive, adhesive, or both, after observation. Permanent deformation, expressed as a percent (%), was determined using ADA specification no. 18. Data from both tests were examined with a 2-way analysis of variance and a Tukey test (alpha=.05).Results. For the tensile test, Softliner specimens submitted to different thermal cycling regimens demonstrated no significantly different bond strength values from the control; however, there was a significant difference between the PermaSoft control group (0.47 +/- 0.09 MPa [mean +/- SD]) and the 500 cycle group (0.46 +/- 0.07 MPa) compared to the 4000 cycle group (0.70 +/- 0.20 MPa) (P<.05). With regard to failure type, the Softliner groups presented adhesive failure (100%) regardless of specimen treatment. PermaSoft groups presented adhesive (53%), cohesive (12%), or a combined mode of failure (35%). For the deformation test, there was no significant difference among the Softliner specimens. However, a significant difference was observed between control and PermaSoft specimens after 1500 or more cycles (1.88% +/- 0.24%) (P<.05).Conclusions. This in vitro study indicated that bond strength and permanent deformation of the 2 resilient denture liners tested varied according to their chemical composition.
Resumo:
The phenomenon of electrical degradation in ZnO varistors was studied by application of high-intensity current pulses. A wave shape of 8 X 20-mu-s and rectangular waves of 1 and 2 ms were used. The degradation was estimated by reference electric-field variation and by Schottky voltage barrier deformation. The results showed that current pulses reduce both the height and the width of the barrier voltage. It was also observed that the donor density N(d) did not change but the surface states density N(s) decreased with degradation.
Resumo:
Kinetics of short-range ordering (SRO) in Ag with 21, 23 and 28 at% Zn is investigated by residual resistometry during isochronal and isothermal heat treatment for different states of post-deformation defect annealing after cold-rolling to about 30 and 60% thickness reduction. Resistivity changes due to pure ordering can be separated from the as-measured total resistivity change which includes defect annealing. Although the initial state of SRO of the as-rolled material can be estimated to be comparably low, for as-rolled and partially annealed states by appropriate thermal treatment evolution of SRO is achieved which corresponds quite well to that of recrystallized samples. It is observed, however, that quenched-in surplus vacancies contribute considerably to the ordering process for the recrystallized state and that this contribution is still increased by the grain growth during the final stage of annealing. It therefore turns out that SRO-kinetics under equilibrium vacancy conditions can be better observed in a state of post-deformation annealing, for which deformation induced point defects are annealed-out, but a relatively high dislocation density is still present to act as a vacancy sink. Copyright (C) 1996 Acta Metallurgica Inc.
Resumo:
A system constituted of three bosons interacting via two-body separable potentials with fixed two-boson binding is known to lead to bound-state collapse in the case where the potential parameters allow two-boson S-matrix poles close to (resonance) and on (continuum bound state) the real momentum axis. The collapse is shown to be accompanied by an increase in the average kinetic energy of the two-body bound state, which signals a decrease in the range of the two-body interaction for fixed two-body binding. The collapse is claimed to be a manifestation of the well-known Thomas effect which leads to a collapse of the three-body system when the range of the two-body interaction goes to zero for a fixed two-body binding.
Resumo:
Within the approach of supersymmetric quantum mechanics associated with the variational method a recipe to construct the superpotential of three-dimensional confined potentials in general is proposed. To illustrate the construction, the energies of the harmonic oscillator and the Hulthen potential, both confined in three dimensions are evaluated. Comparison with the corresponding results of other approximative and exact numerical results is presented. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this work we develop an approach to obtain analytical expressions for potentials in an impenetrable box. In this kind of system the expression has the advantage of being valid for arbitrary values of the box length, and respect the correct quantum limits. The similarity of this kind of problem with the quasi exactly solvable potentials is explored in order to accomplish our goals. Problems related to the break of symmetries and simultaneous eigenfunctions of commuting operators are discussed.
Resumo:
Ferralsols have high structural stability, although structural degradation has been observed to result from forest to tillage or pasture conversion. An experimental series of forest skidder passes in an east Amazonian natural forest was performed for testing the effects of mechanical stress during selective logging operations on a clay-rich Ferralsol under both dry and wet soil conditions. Distinct ruts formed up to 25 cm depth only under wet conditions. After nine passes the initially very low surface bulk density of between 0.69 and 0.80 g cm(-3) increased to 1.05 g cm(-3) in the wet soil and 0.92 g cm(-3) in the dry soil. Saturated hydraulic conductivities, initially > 250 mm h(-1), declined to a minimum of around 10 mm h(-1) in the wet soil after the first pass, and in the dry soil more gradually after nine passes. The contrasting response of bulk density and saturated hydraulic conductivity is explained by exposure of subsoil material at the base of the ruts where macrostructure rapidly deteriorated under wet conditions. We attribute the resultant moderately high hydraulic conductivities to the formation of stable microaggregates with fine sand to coarse silt textures. We conclude that the topsoil macrostructure of Ferralsols is subject to similar deterioration to that of Luvisols in temperate zones. The stable microstructure prevents marked compaction and decrease in hydraulic conductivity under wetter and more plastic soil conditions. However, typical tropical storms may regularly exceed the infiltration capacity of the deformed soils. In the deeper ruts water may concentrate and cause surface run-off, even in gently sloping areas. To avoid soil erosion, logging operations in sloping areas should therefore be restricted to dry soil conditions when rut formation is minimal.
Resumo:
Extensions of the standard model with N Higgs doublets are simple extensions presenting a rich mathematical structure. An underlying Minkowski structure emerges from the study of both variable space and parameter space. The former can be completely parametrized in terms of two future lightlike Minkowski vectors with spatial parts forming an angle whose cosine is -(N-1)(-1). For the parameter space, the Minkowski parametrization enables one to impose sufficient conditions for bounded below potentials, characterize certain classes of local minima, and distinguish charge breaking vacua from neutral vacua. A particular class of neutral minima presents a degenerate mass spectrum for the physical charged Higgs bosons.
Resumo:
The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at similar to 0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant. (c) 2006 Elsevier Ltd. All rights reserved.