957 resultados para DATABASES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is increasing evidence that many of the mitochondrial DNA (mtDNA) databases published in the fields of forensic science and molecular anthropology are flawed. An a posteriori phylogenetic analysis of the sequences could help to eliminate most of the errors and thus greatly improve data quality. However, previously published caveats and recommendations along these lines were not yet picked up by all researchers. Here we call for stringent quality control of mtDNA data by haplogroup-directed database comparisons. We take some problematic databases of East Asian mtDNAs, published in the Journal of Forensic Sciences and Forensic Science International, as examples to demonstrate the process of pinpointing obvious errors. Our results show that data sets are not only notoriously plagued by base shifts and artificial recombination but also by lab-specific phantom mutations, especially in the second hypervariable region (HVR-II). (C) 2003 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Climate Change Act of 2008 the UK Government pledged to reduce carbon emissions by 80% by 2050. As one step towards this, regulations are being introduced requiring all new buildings to be ‘zero carbon’ by 2019. These are defined as buildings which emit net zero carbon during their operational lifetime. However, in order to meet the 80% target it is necessary to reduce the carbon emitted during the whole life-cycle of buildings, including that emitted during the processes of construction. These elements make up the ‘embodied carbon’ of the building. While there are no regulations yet in place to restrict embodied carbon, a number of different approaches have been made. There are several existing databases of embodied carbon and embodied energy. Most provide data for the material extraction and manufacturing only, the ‘cradle to factory gate’ phase. In addition to the databases, various software tools have been developed to calculate embodied energy and carbon of individual buildings. A third source of data comes from the research literature, in which individual life cycle analyses of buildings are reported. This paper provides a comprehensive review, comparing and assessing data sources, boundaries and methodologies. The paper concludes that the wide variations in these aspects produce incomparable results. It highlights the areas where existing data is reliable, and where new data and more precise methods are needed. This comprehensive review will guide the future development of a consistent and transparent database and software tool to calculate the embodied energy and carbon of buildings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superimposed on the activation of the embryonic genome in the preimplantation mouse embryo is the formation of a transcriptionally repressive state during the two-cell stage. This repression appears mediated at the level of chromatin structure, because it is reversed by inducing histone hyperacetylation or inhibiting the second round of DNA replication. We report that of more than 200 amplicons analyzed by mRNA differential display, about 45% of them are repressed between the two-cell and four-cell stages. This repression is scored as either a decrease in amplicon expression that occurs between the two-cell and four-cell stages or on the ability of either trichostatin A tan inhibitor of histone deacetylases) or aphidicolin tan inhibitor of replicative DNA polymerases) to increase the level of amplicon expression. Results of this study also indicate that about 16% of the amplicons analyzed likely are novel genes whose sequence doesn't correspond to sequences in the current databases, whereas about 20% of the sequences expressed during this transition likely are repetitive sequences. Lastly, inducing histone hyperacetylation in the two-cell embryos inhibits cleavage to the four-cell stage. These results suggest that genome activation is global and relatively promiscuous and that a function of the transcriptionally repressive state is to dictate the appropriate profile of gene expression that is compatible with further development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, there has been an increased number of sequenced RNAs leading to the development of new RNA databases. Thus, predicting RNA structure from multiple alignments is an important issue to understand its function. Since RNA secondary structures are often conserved in evolution, developing methods to identify covariate sites in an alignment can be essential for discovering structural elements. Structure Logo is a technique established on the basis of entropy and mutual information measured to analyze RNA sequences from an alignment. We proposed an efficient Structure Logo approach to analyze conservations and correlations in a set of Cardioviral RNA sequences. The entropy and mutual information content were measured to examine the conservations and correlations, respectively. The conserved secondary structure motifs were predicted on the basis of the conservation and correlation analyses. Our predictive motifs were similar to the ones observed in the viral RNA structure database, and the correlations between bases also corresponded to the secondary structure in the database.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This letter presents data from triaxial tests conducted as part of a research programme into the stress-strain behaviour of clays and silts at Cambridge University. To support findings from earlier research using databases of soil tests, eighteen CIU triaxial tests on speswhite kaolin were performed to confirm an assumed link between mobilisation strain (γ M=2) and overconsolidation ratio (OCR). In the moderate shear stress range (0.2c u to 0.8c u) the test data are essentially linear on log-log plots. Both the slopes and intercepts of these lines are simple functions of OCR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an automatic speaker recognition system for intelligence applications. The system has to provide functionalities for a speaker skimming application in which databases of recorded conversations belonging to an ongoing investigation can be annotated and quickly browsed by an operator. The paper discusses the criticalities introduced by the characteristics of the audio signals under consideration - in particular background noise and channel/coding distortions - as well as the requirements and functionalities of the system under development. It is shown that the performance of state-of-the-art approaches degrades significantly in presence of moderately high background noise. Finally, a novel speaker recognizer based on phonetic features and an ensemble classifier is presented. Results show that the proposed approach improves performance on clean audio, and suggest that it can be employed towards improved real-world robustness. © EURASIP, 2009.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. Examples include surface cracks detection, assessment of fire-damaged mortar, fatigue evaluation of asphalt mixes, aggregate shape measurements, velocimentry, vehicles detection, pore size distribution in geotextiles, damage detection and others. This capability is a product of the technological breakthroughs in the area of Image and Video Processing that has allowed for the development of a large number of digital imaging applications in all industries ranging from the well established medical diagnostic tools (magnetic resonance imaging, spectroscopy and nuclear medical imaging) to image searching mechanisms (image matching, content based image retrieval). Content based image retrieval techniques can also assist in the automated recognition of materials in construction site images and thus enable the development of reliable methods for image classification and retrieval. The amount of original imaging information produced yearly in the construction industry during the last decade has experienced a tremendous growth. Digital cameras and image databases are gradually replacing traditional photography while owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks. However, construction companies tend to store images without following any standardized indexing protocols, thus making the manual searching and retrieval a tedious and time-consuming effort. Alternatively, material and object identification techniques can be used for the development of automated, content based, construction site image retrieval methodology. These methods can utilize automatic material or object based indexing to remove the user from the time-consuming and tedious manual classification process. In this paper, a novel material identification methodology is presented. This method utilizes content based image retrieval concepts to match known material samples with material clusters within the image content. The results demonstrate the suitability of this methodology for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amount of original imaging information produced yearly during the last decade has experienced a tremendous growth in all industries due to the technological breakthroughs in digital imaging and electronic storage capabilities. This trend is affecting the construction industry as well, where digital cameras and image databases are gradually replacing traditional photography. Owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks like monitoring an activity's progress and keeping evidence of the "as built" in case any disputes arise. So far, retrieval methodologies are done manually with the user being responsible for imaging classification according to specific rules that serve a limited number of construction management tasks. New methods that, with the guidance of the user, can automatically classify and retrieve construction site images are being developed and promise to remove the heavy burden of manually indexing images. In this paper, both the existing methods and a novel image retrieval method developed by the authors for the classification and retrieval of construction site images are described and compared. Specifically a number of examples are deployed in order to present their advantages and limitations. The results from this comparison demonstrates that the content based image retrieval method developed by the authors can reduce the overall time spent for the classification and retrieval of construction images while providing the user with the flexibility to retrieve images according different classification schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compared with structured data sources that are usually stored and analyzed in spreadsheets, relational databases, and single data tables, unstructured construction data sources such as text documents, site images, web pages, and project schedules have been less intensively studied due to additional challenges in data preparation, representation, and analysis. In this paper, our vision for data management and mining addressing such challenges are presented, together with related research results from previous work, as well as our recent developments of data mining on text-based, web-based, image-based, and network-based construction databases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital photographs of construction site activities are gradually replacing their traditional paper based counterparts. Existing digital imaging technologies in hardware and software make it easy for site engineers to take numerous photographs of “interesting” processes and activities on a daily basis. The resulting photographic data are evidence of the “as-built” project, and can therefore be used in a number of project life cycle tasks. However, the task of retrieving the relevant photographs needed in these tasks is often burdened by the sheer volume of photographs accumulating in project databases over time and the numerous objects present in each photograph. To solve this problem, the writers have recently developed a number of complementary techniques that can automatically classify and retrieve construction site images according to a variety of criteria (materials, time, date, location, etc.). This paper presents a novel complementary technique that can automatically identify linear (i.e., beam, column) and nonlinear (i.e., wall, slab) construction objects within the image content and use that information to enhance the performance of the writers’ existing construction site image retrieval approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In spite of over two decades of intense research, illumination and pose invariance remain prohibitively challenging aspects of face recognition for most practical applications. The objective of this work is to recognize faces using video sequences both for training and recognition input, in a realistic, unconstrained setup in which lighting, pose and user motion pattern have a wide variability and face images are of low resolution. The central contribution is an illumination invariant, which we show to be suitable for recognition from video of loosely constrained head motion. In particular there are three contributions: (i) we show how a photometric model of image formation can be combined with a statistical model of generic face appearance variation to exploit the proposed invariant and generalize in the presence of extreme illumination changes; (ii) we introduce a video sequence re-illumination algorithm to achieve fine alignment of two video sequences; and (iii) we use the smoothness of geodesically local appearance manifold structure and a robust same-identity likelihood to achieve robustness to unseen head poses. We describe a fully automatic recognition system based on the proposed method and an extensive evaluation on 323 individuals and 1474 video sequences with extreme illumination, pose and head motion variation. Our system consistently achieved a nearly perfect recognition rate (over 99.7% on all four databases). © 2012 Elsevier Ltd All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental problem in the analysis of structured relational data like graphs, networks, databases, and matrices is to extract a summary of the common structure underlying relations between individual entities. Relational data are typically encoded in the form of arrays; invariance to the ordering of rows and columns corresponds to exchangeable arrays. Results in probability theory due to Aldous, Hoover and Kallenberg show that exchangeable arrays can be represented in terms of a random measurable function which constitutes the natural model parameter in a Bayesian model. We obtain a flexible yet simple Bayesian nonparametric model by placing a Gaussian process prior on the parameter function. Efficient inference utilises elliptical slice sampling combined with a random sparse approximation to the Gaussian process. We demonstrate applications of the model to network data and clarify its relation to models in the literature, several of which emerge as special cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Climate Change Act of 2008 the UK Government pledged to reduce carbon emissions by 80% by 2050. As one step towards this, regulations are being introduced requiring all new buildings to be ‘zero carbon’ by 2019. These are defined as buildingswhichemitnetzerocarbonduringtheiroperationallifetime.However,inordertomeetthe80%targetitisnecessary to reduce the carbon emitted during the whole life-cycle of buildings, including that emitted during the processes of construction. These elements make up the ‘embodied carbon’ of the building. While there are no regulations yet in place to restrictembodiedcarbon,anumberofdifferentapproacheshavebeenmade.Thereareseveralexistingdatabasesofembodied carbonandembodiedenergy.Mostprovidedataforthematerialextractionandmanufacturingonly,the‘cradletofactorygate’ phase. In addition to the databases, various software tools have been developed to calculate embodied energy and carbon of individual buildings. A third source of data comes from the research literature, in which individual life cycle analyses of buildings are reported. This paper provides a comprehensive review, comparing and assessing data sources, boundaries and methodologies. The paper concludes that the wide variations in these aspects produce incomparable results. It highlights the areas where existing data is reliable, and where new data and more precise methods are needed. This comprehensive review will guide the future development of a consistent and transparent database and software tool to calculate the embodied energy and carbon of buildings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical approaches for building non-rigid deformable models, such as the Active Appearance Model (AAM), have enjoyed great popularity in recent years, but typically require tedious manual annotation of training images. In this paper, a learning based approach for the automatic annotation of visually deformable objects from a single annotated frontal image is presented and demonstrated on the example of automatically annotating face images that can be used for building AAMs for fitting and tracking. This approach employs the idea of initially learning the correspondences between landmarks in a frontal image and a set of training images with a face in arbitrary poses. Using this learner, virtual images of unseen faces at any arbitrary pose for which the learner was trained can be reconstructed by predicting the new landmark locations and warping the texture from the frontal image. View-based AAMs are then built from the virtual images and used for automatically annotating unseen images, including images of different facial expressions, at any random pose within the maximum range spanned by the virtually reconstructed images. The approach is experimentally validated by automatically annotating face images from three different databases. © 2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many visual datasets are traditionally used to analyze the performance of different learning techniques. The evaluation is usually done within each dataset, therefore it is questionable if such results are a reliable indicator of true generalization ability. We propose here an algorithm to exploit the existing data resources when learning on a new multiclass problem. Our main idea is to identify an image representation that decomposes orthogonally into two subspaces: a part specific to each dataset, and a part generic to, and therefore shared between, all the considered source sets. This allows us to use the generic representation as un-biased reference knowledge for a novel classification task. By casting the method in the multi-view setting, we also make it possible to use different features for different databases. We call the algorithm MUST, Multitask Unaligned Shared knowledge Transfer. Through extensive experiments on five public datasets, we show that MUST consistently improves the cross-datasets generalization performance. © 2013 Springer-Verlag.