942 resultados para Cytosine déaminase de Saccharomyces cerevisae (yCD)
Resumo:
La quantité de données générée dans le cadre d'étude à grande échelle du réseau d'interaction protéine-protéine dépasse notre capacité à les analyser et à comprendre leur sens; d'une part, par leur complexité et leur volume, et d'un autre part, par la qualité du jeu de donnée produit qui semble bondé de faux positifs et de faux négatifs. Cette dissertation décrit une nouvelle méthode de criblage des interactions physique entre protéines à haut débit chez Saccharomyces cerevisiae, la complémentation de fragments protéiques (PCA). Cette approche est accomplie dans des cellules intactes dans les conditions natives des protéines; sous leur promoteur endogène et dans le respect des contextes de modifications post-traductionnelles et de localisations subcellulaires. Une application biologique de cette méthode a permis de démontrer la capacité de ce système rapporteur à répondre aux questions d'adaptation cellulaire à des stress, comme la famine en nutriments et un traitement à une drogue. Dans le premier chapitre de cette dissertation, nous avons présenté un criblage des paires d'interactions entre les protéines résultant des quelques 6000 cadres de lecture de Saccharomyces cerevisiae. Nous avons identifié 2770 interactions entre 1124 protéines. Nous avons estimé la qualité de notre criblage en le comparant à d'autres banques d'interaction. Nous avons réalisé que la majorité de nos interactions sont nouvelles, alors que le chevauchement avec les données des autres méthodes est large. Nous avons pris cette opportunité pour caractériser les facteurs déterminants dans la détection d'une interaction par PCA. Nous avons remarqué que notre approche est sous une contrainte stérique provenant de la nécessité des fragments rapporteurs à pouvoir se rejoindre dans l'espace cellulaire afin de récupérer l'activité observable de la sonde d'interaction. L'intégration de nos résultats aux connaissances des dynamiques de régulations génétiques et des modifications protéiques nous dirigera vers une meilleure compréhension des processus cellulaires complexes orchestrés aux niveaux moléculaires et structuraux dans les cellules vivantes. Nous avons appliqué notre méthode aux réarrangements dynamiques opérant durant l'adaptation de la cellule à des stress, comme la famine en nutriments et le traitement à une drogue. Cette investigation fait le détail de notre second chapitre. Nous avons déterminé de cette manière que l'équilibre entre les formes phosphorylées et déphosphorylées de l'arginine méthyltransférase de Saccharomyces cerevisiae, Hmt1, régulait du même coup sont assemblage en hexamère et son activité enzymatique. L'activité d'Hmt1 a directement un impact dans la progression du cycle cellulaire durant un stress, stabilisant les transcrits de CLB2 et permettant la synthèse de Cln3p. Nous avons utilisé notre criblage afin de déterminer les régulateurs de la phosphorylation d'Hmt1 dans un contexte de traitement à la rapamycin, un inhibiteur de la kinase cible de la rapamycin (TOR). Nous avons identifié la sous-unité catalytique de la phosphatase PP2a, Pph22, activé par l'inhibition de la kinase TOR et la kinase Dbf2, activé durant l'entrée en mitose de la cellule, comme la phosphatase et la kinase responsable de la modification d'Hmt1 et de ses fonctions de régulations dans le cycle cellulaire. Cette approche peut être généralisée afin d'identifier et de lier mécanistiquement les gènes, incluant ceux n'ayant aucune fonction connue, à tout processus cellulaire, comme les mécanismes régulant l'ARNm.
Resumo:
La chromatine est un système de compaction de l’ADN jouant un rôle important dans la régulation de l’expression génique. L’acétylation de la chromatine provoque un relâchement de sa structure, facilitant le recrutement de facteurs de transcription. Inversement, des complexes histones déacétylases favorisent une structure compacte, réprimant l’expression de gènes. Un complexe HDAC, Rpd3S, est recruté par l’ARN polymérase II phosphorylée sur les régions codantes transcrites. Cette activité HDAC est stimulée par la déposition de la marque H3K36me générée par l’histone méthyltransférase Set2. Par approche génomique, en utilisant comme organisme modèle Saccharomyces cerevisiae, j’ai optimisé la méthode de ChIP-chip puis démontré que les sous unités Hos2 et Set3 d’un autre complexe HDAC, Set3C, étaient recrutées sur des régions codantes de gènes transcrits. De plus, Set3C est connu pour être recruté soit par H3K4me ou par la Pol II. La suite du projet portera sur le recrutement de Set3C qui semble similaire à Rpd3S.
Resumo:
Résumé La Ribonucléase P (RNase P) est une enzyme principalement reconnue pour sa participation à la maturation en 5’des ARN de transfert (ARNt). Cependant, d’autres substrats sont reconnus par l’enzyme. En général, la RNase P est composée d’une sous-unité ARN (le P-ARN, codé par le gène rnpB) qui porte le centre actif de l’enzyme et d’une ou de plusieurs sous-unités protéiques (la P-protéine). Les P-ARN chez toutes les bactéries, la majorité des archéobactéries et dans le génome nucléaire de la plupart des eucaryotes, possèdent généralement une structure secondaire très conservée qui inclut le noyau (P1-P4); l’hélice P4 constitue le site catalytique de l’enzyme et l’hélice P1 apparie les extrémités du P-ARN en stabilisant sa structure globale. Les P-ARN mitochondriaux sont souvent moins conservés et difficiles à découvrir. Dans certains cas, les seules régions de structure primaire qui restent conservées sont celles qui définissent le P4 et le P1. Pour la détection des gènes rnpB, un outil de recherche bioinformatique, basé sur la séquence et le profil de structure secondaire, a été développé dans le laboratoire. Cet outil permet le dépistage de toutes les séquences eucaryotes (nucléaires et mitochondriales) du gène avec une très grande confiance (basée sur une valeur statistique, E-value). Chez les champignons, plusieurs ascomycètes encodent un gène rnpB dans leur génome mitochondrial y compris tous les membres du genre d’Aspergillus. Cependant, chez les espèces voisines, Neurospora crassa, Podospora anserina et Sordaria macrospora, une version mitochondriale de ce gène n’existe pas. Au lieu de cela, elles contiennent deux copies nucléaires du gène, légèrement différentes en taille et en contenu nucléotidique. Mon projet a été établi dans le but d’éclaircir l’évolution de la RNase P mitochondriale (mtRNase P) chez ces trois espèces voisines d’Aspergillus. En ce qui concerne les résultats, des modèles de structures secondaires pour les transcrits de ces gènes ont été construits en se basant sur la structure consensus universelle de la sous-unité ARN de la RNase P. Pour les trois espèces, par la comparaison de ces modèles, nous avons établi que les deux copies nucléaires du gène rnpB sont assez distinctes en séquence et en structure pour pouvoir y penser à une spécialisation de fonction de la RNase P. Chez N. crassa, les deux P-ARN sont modifiés probablement par une coiffe et les extrémités 5’, 3’ sont conformes à nos modèles, ayant un P1 allongé. Encore chez N. crassa, nous avons constaté que les deux copies sont transcrites au même niveau dans le cytoplasme et que la plus petite et la plus stable d’entre elles (Nc1) se retrouve dans l’extrait matriciel mitochondrial. Lors du suivi du P-ARN dans diverses sous-fractions provenant de la matrice mitochondriale soluble, Nc1 est associée avec l’activité de la RNase P. La caractérisation du complexe protéique, isolé à partir de la fraction active sur un gel non dénaturant, révèle qu’il contient au moins 87 protéines, 73 d’entre elles ayant déjà une localisation mitochondriale connue. Comme chez la levure, les protéines de ce complexe sont impliquées dans plusieurs fonctions cellulaires comme le processing de l’ADN/ARN, le métabolisme, dans la traduction et d’autres (par exemple : la protéolyse et le repliement des protéines, ainsi que la maintenance du génome mitochondrial). Pour trois protéines, leur fonction est non déterminée.
Resumo:
La localisation des ARNm par transport dirigé joue un rôle dans le développement, la motilité cellulaire, la plasticité synaptique et la division cellulaire asymétrique. Chez la levure Saccharomyces cerevisiæ, la localisation d’ARNm est un phénomène dont les mécanismes de régulation sont conservés auprès de nombreux autres organismes. Lors de la division de la levure, plus d’une trentaine de transcrits sont localisés par transport actif à l’extrémité du bourgeon de la cellule-fille. Parmi ceux-ci, l’ARNm ASH1 est le mieux caractérisé et constitue le modèle utilisé dans cette étude. Pour exercer sa fonction, la protéine Ash1 doit être produite uniquement après la localisation de l’ARNm ASH1. Pour ce faire, les mécanismes de régulation de la traduction de l’ARNm ASH1 empêchent son expression durant le transport. Ce projet de recherche vise à étudier les mécanismes de régulation de la traduction de l’ARNm ASH1 par les répresseurs traductionnels connus, soit Khd1, Puf6 et Loc1. Les études antérieures se sont penchées sur ces facteurs de manière individuelle. Cependant, dans cette étude, nous avons exploré la présence d’une collaboration entre ceux-ci. Ainsi, nous avons voulu déterminer si les répresseurs traductionnels peuvent être intégrés en une seule voie de régulation de la traduction de l’ARNm ASH1. De plus, nous avons cherché à identifier le mécanisme de recrutement des répresseurs traductionnels sur l’ARNm ASH1, qui correspond au point initial des voies de régulations de l’ARNm ASH1. Nos résultats montrent que les répresseurs traductionnels de l’ARNm ASH1, soit Khd1 et Puf6, font partie d’une même voie de régulation de la traduction. Le rôle du facteur nucléaire Loc1 dans la voie de régulation de la traduction, quant à elle, a été examinée à partir d’expériences permettant l’étude du mécanisme de recrutement des répresseurs traductionnels dans le noyau. Ainsi, nos travaux montrent que Puf6 et Loc1 sont associés de manière ARN-dépendant avec la machinerie de transcription, notamment au facteur d’élongation de la transcription Spt4-Spt5/DSIF. Par ailleurs, notre laboratoire a précédemment montré que la localisation nucléaire de la protéine de liaison à l’ARN She2 est essentielle au recrutement des facteurs Loc1 et Puf6 sur l’ARNm ASH1. Des expériences d’immunoprécipitation de la chromatine (ChIP) supportent l’hypothèse que le recrutement de Loc1 est essentiel à celui de Puf6, qui s’effectue ultérieurement. Ainsi, à partir des résultats de cette étude et des résultats publiés précédemment dans notre laboratoire, nous avons élaboré un modèle de recrutement coordonné des facteurs She2, Loc1 et Puf6 sur l’ARNm ASH1 naissant. De manière générale, cette étude a permis d’établir la présence d’une seule voie de régulation de la traduction de l’ARNm ASH1 et une meilleure connaissance du recrutement des facteurs de répression traductionnelle sur celui-ci.
Resumo:
La méthylation de l'ADN est une marque épigénétique importante chez les mammifères. Malgré le fait que la méthylation de la cytosine en 5' (5mC) soit reconnue comme une modification épigénétique stable, il devient de plus en plus reconnu qu'elle soit un processus plus dynamique impliquant des voies de méthylation et de déméthylation actives. La dynamique de la méthylation de l'ADN est désormais bien caractérisée dans le développement et dans le fonctionnement cellulaire des mammifères. Très peu est cependant connu concernant les implications régulatrices dans les réponses immunitaires. Pour se faire, nous avons effectué des analyses du niveau de transcription des gènes ainsi que du profilage épigénétique de cellules dendritiques (DCs) humaines. Ceux-ci ont été faits avant et après infection par le pathogène Mycobacterium tuberculosis (MTB). Nos résultats fournissent le premier portrait génomique du remodelage épigénétique survenant dans les DCs en réponse à une infection bactérienne. Nous avons constaté que les changements dans la méthylation de l'ADN sont omniprésents, identifiant 3,926 régions différentiellement méthylées lors des infections par MTB (MTB-RDMs). Les MTB-RDMs montrent un chevauchement frappant avec les régions génomiques marquées par les histones associées avec des régions amplificatrices. De plus, nos analyses ont révélées que les MTB-RDMs sont activement liées par des facteurs de transcription associés à l'immunité avant même d'être infecté par MTB, suggérant ces domaines comme étant des éléments d'activation dans un état de dormance. Nos données suggèrent que les changements actifs dans la méthylation jouent un rôle essentiel pour contrôler la réponse cellulaire des DCs à l'infection bactérienne.
Resumo:
La compréhension de processus biologiques complexes requiert des approches expérimentales et informatiques sophistiquées. Les récents progrès dans le domaine des stratégies génomiques fonctionnelles mettent dorénavant à notre disposition de puissants outils de collecte de données sur l’interconnectivité des gènes, des protéines et des petites molécules, dans le but d’étudier les principes organisationnels de leurs réseaux cellulaires. L’intégration de ces connaissances au sein d’un cadre de référence en biologie systémique permettrait la prédiction de nouvelles fonctions de gènes qui demeurent non caractérisées à ce jour. Afin de réaliser de telles prédictions à l’échelle génomique chez la levure Saccharomyces cerevisiae, nous avons développé une stratégie innovatrice qui combine le criblage interactomique à haut débit des interactions protéines-protéines, la prédiction de la fonction des gènes in silico ainsi que la validation de ces prédictions avec la lipidomique à haut débit. D’abord, nous avons exécuté un dépistage à grande échelle des interactions protéines-protéines à l’aide de la complémentation de fragments protéiques. Cette méthode a permis de déceler des interactions in vivo entre les protéines exprimées par leurs promoteurs naturels. De plus, aucun biais lié aux interactions des membranes n’a pu être mis en évidence avec cette méthode, comparativement aux autres techniques existantes qui décèlent les interactions protéines-protéines. Conséquemment, nous avons découvert plusieurs nouvelles interactions et nous avons augmenté la couverture d’un interactome d’homéostasie lipidique dont la compréhension demeure encore incomplète à ce jour. Par la suite, nous avons appliqué un algorithme d’apprentissage afin d’identifier huit gènes non caractérisés ayant un rôle potentiel dans le métabolisme des lipides. Finalement, nous avons étudié si ces gènes et un groupe de régulateurs transcriptionnels distincts, non préalablement impliqués avec les lipides, avaient un rôle dans l’homéostasie des lipides. Dans ce but, nous avons analysé les lipidomes des délétions mutantes de gènes sélectionnés. Afin d’examiner une grande quantité de souches, nous avons développé une plateforme à haut débit pour le criblage lipidomique à contenu élevé des bibliothèques de levures mutantes. Cette plateforme consiste en la spectrométrie de masse à haute resolution Orbitrap et en un cadre de traitement des données dédié et supportant le phénotypage des lipides de centaines de mutations de Saccharomyces cerevisiae. Les méthodes expérimentales en lipidomiques ont confirmé les prédictions fonctionnelles en démontrant certaines différences au sein des phénotypes métaboliques lipidiques des délétions mutantes ayant une absence des gènes YBR141C et YJR015W, connus pour leur implication dans le métabolisme des lipides. Une altération du phénotype lipidique a également été observé pour une délétion mutante du facteur de transcription KAR4 qui n’avait pas été auparavant lié au métabolisme lipidique. Tous ces résultats démontrent qu’un processus qui intègre l’acquisition de nouvelles interactions moléculaires, la prédiction informatique des fonctions des gènes et une plateforme lipidomique innovatrice à haut débit , constitue un ajout important aux méthodologies existantes en biologie systémique. Les développements en méthodologies génomiques fonctionnelles et en technologies lipidomiques fournissent donc de nouveaux moyens pour étudier les réseaux biologiques des eucaryotes supérieurs, incluant les mammifères. Par conséquent, le stratégie présenté ici détient un potentiel d’application au sein d’organismes plus complexes.
Resumo:
La rapamycine est un immunosuppresseur utilisé pour traiter plusieurs types de maladies dont le cancer du rein. Son fonctionnement par l’inhibition de la voie de Tor mène à des changements dans des processus physiologiques, incluant le cycle cellulaire. Chez Saccharomyces cerevisiae, la rapamycine conduit à une altération rapide et globale de l’expression génique, déclenchant un remodelage de la chromatine. Nous proposons que les modifications des histones peuvent jouer un rôle crucial dans le remodelage de la chromatine en réponse à la rapamycine. Notre objectif principal est d’identifier d’une banque de mutants d’histone les variantes qui vont échouer à répondre à la rapamycine dans une tentative de réaliser une caractérisation des modifications d’histone critiques pour la réponse à cette drogue. Ainsi, nous avons réalisé un criblage d’une banque de mutants d’histone et identifié plusieurs mutants d‘histone dont la résistance à la rapamycine a été altérée. Nous avons caractérisé une de ces variantes d’histone, à savoir H2B, qui porte une substitution de l’alanine en arginine en position 95 (H2B-R95A) et démontré que ce mutant est extrêmement résistant à la rapamycine, et non à d’autres drogues. Des immunoprécipitations ont démontré que H2B-R95A est défectueux pour former un complexe avec Spt16, un facteur essentiel pour la dissociation de H2A et H2B de la chromatine, permetant la réplication et la transcription par les ADN et ARN polymérases, respectivement. Des expériences de ChIP-Chip et de micropuce ont démontré que l’arginine 95 de H2B est requise pour recruter Spt16 afin de permettre l’expression d’une multitude de gènes, dont certains font partie de la voie des phéromones. Des évidences seront présentées pour la première fois démontrant que la rapamycine peut activer la voie des phéromones et qu’une défectuosité dans cette voie cause la résistante à cette drogue.
Resumo:
ADN subit une série de transformations structurelles complexes au cours de la division cellulaire, ce qui entraîne dans son compactage chromosomes mitotiques par un processus appelé la condensation des chromosomes. Le complexe de condensine pentamérique est fortement impliqué comme un effecteur majeur de ce phénomène. Il s'agit d'un complexe protéine de sous-unités multiples avec deux sous-unités catalytiques [SMC- Structural Maintenance of Chromosomes] et de trois sous-unités de régulation, hautement conservés de la levure à l'homme. Le complexe de condensine dans Saccharomyces cerevisiae est constitué de deux sous-unités de SMC [Smc2 et Smc4] et trois protéines non réglementaires [Brn1, Ycs4, Ycg1]. Malgré son importance, le mécanisme d'action de condensine reste largement inconnu. Par conséquent, l'objectif de cette recherche est de comprendre le mécanisme d'action de condensine et comment elle est affectée par l'interaction entre ses sous-unités réglementaires et non-réglementaires. Cette thèse identifie quatre morphologies dépendants du cycle cellulaire distincts du locus d'ADNr. Cette transformation du phénotype ADNr de G1 à la mitose dépend condensine. Afin de déterminer le rôle de l'interaction entre les sous-unités catalytiques et réglementaires de condensine dans la régulation du complexe condensine, nous avons identifié six résidus positifs sur l'extrémité C-terminale de BRN1 qui affectent la formation du complexe condensine, l'activité de la condensation et l'interaction avec tubuline, ce qui suggère que ces résidus ont un rôle dans la régulation de condensine. Ensemble, nos résultats suggèrent un modèle de règlement du condensine par l'interaction entre les sous-unités de condensine.
Resumo:
La méthylation de l'ADN est l'une des modifications épigénétiques au niveau des îlots CpG. Cette modification épigénétique catalysée par les ADN méthyltransférases (DNMTs) consiste en la méthylation du carbone 5' d’une cytosine ce qui aboutit à la formation de 5-méthylcytosine. La méthylation de l'ADN est clairement impliquée dans l'inactivation des gènes et dans l'empreinte génétique. Elle est modulée par la nutrition, en particulier par les donneurs de méthyle et par une restriction protéique. Ces modifications épigénétiques persistent plus tard dans la vie et conduisent au développement de nombreuses pathologies telles que le syndrome métabolique et le diabète de type 2. En fait, de nombreux gènes clés subissent une modification de leur état de méthylation en présence des composants du syndrome métabolique. Cela montre que la méthylation de l'ADN est un processus important dans l'étiologie du syndrome métabolique. Le premier travail de ce doctorat a porté sur la rédaction d’un article de revue qui a examiné le cadre central du syndrome métabolique et analyser le rôle des modifications épigénétiques susceptibles d'influer sur l'apparition du stress oxydant et des complications cardiométaboliques. D’autre part, les cellules intestinales Caco-2/15, qui ont la capacité de se différencier et d’acquérir les caractéristiques physiologiques de l'intestin grêle, ont été utilisées et traitées avec du Fer-Ascorbate pour induire un stress oxydant. Le Fer-Ascorbate a induit une augmentation significative de l’inflammation et de la peroxydation des lipides (malondialdehyde) ainsi que des altérations de de la défense antioxydante (SOD2 et GPx) accompagnées de modifications épigénétiques. De plus, la pré-incubation des cellules avec de la 5-aza-2'-désoxycytidine, un agent de déméthylation et/ou l’antioxydant Trolox a normalisé la défense antioxydante, réduit la peroxydation des lipides et prévenu l'inflammation. Ce premier travail a démontré que les modifications du redox et l’inflammation induites par le Fer-Ascorbate peuvent impliquer des changements épigénétiques, plus particulièrement des changements dans la méthylation de l’ADN. Pour mieux définir l’impact du stress oxydant au niveau nutritionnel, des cochons d’Inde âgés de trois jours ont été séparés en trois groupes : 1) Témoins: alimentation régulière; 2) Nutrition parentérale (NP) 3) H2O2 : Témoins + 350 uM H2O2. Après quatre jours, pour un groupe, les perfusions ont été stoppées et les animaux sacrifiés pour la collecte des foies. Pour l’autre groupe d’animaux, les perfusions ont été arrêtées et les animaux ont eu un accès libre à une alimentation régulière jusqu'à la fin de l’étude, huit semaines plus tard où ils ont été sacrifiés pour la collecte des foies. Ceci a démontré qu’à une semaine de vie, l'activité DNMT et les niveaux de 5'-méthyl-2'-désoxycytidine étaient inférieurs pour les groupes NP et H2O2 par rapport aux témoins. A neuf semaines de vie, l’activité DNMT est restée basse pour le groupe NP alors que les niveaux de 5'-méthyl-2'-désoxycytidine étaient plus faibles pour les groupes NP et H2O2 par rapport aux témoins. Ce travail a démontré que l'administration de NP ou de H2O2, tôt dans la vie, induit une hypométhylation de l'ADN persistante en raison d'une inhibition de l'activité DNMT. Finalement, des souris ayant reçu une diète riche en gras et en sucre (HFHS) ont été utilisées comme modèle in vivo de syndrome métabolique. Les souris ont été nourris soit avec un régime standard chow (témoins), soit avec une diète riche en gras et en sucre (HFHS) ou avec une diète HFHS en combinaison avec du GFT505 (30 mg/kg), un double agoniste de PPARα et de PPARδ, pendant 12 semaines. La diète HFHS était efficace à induire un syndrome métabolique étant donnée l’augmentation du poids corporel, du poids hépatique, des adiposités viscérales et sous-cutanées, de l’insensibilité à l’insuline, des lipides plasmatiques et hépatiques, du stress oxydant et de l’inflammation au niveau du foie. Ces perturbations étaient accompagnées d’une déficience dans l’expression des gènes hépatiques PPARα et PPARγ concomitant avec une hyperméthylation de leurs promoteurs respectifs. L’ajout de GFT505 à la diète HFHS a empêché la plupart des effets cardiométaboliques induits par la diète HFHS via la modulation négative de l’hyperméthylation des promoteurs, résultant en l’augmentation de l’expression des gènes hépatiques PPARα et PPARγ. En conclusion, GFT505 exerce des effets métaboliques positifs en améliorant le syndrome métabolique induit par l'alimentation HFHS via des modifications épigénétiques des gènes PPARs. Ensemble, les travaux de cette thèse ont démontré que le stress oxydant provenant de la nutrition induit d’importants changements épigénétiques pouvant conduire au développement du syndrome métabolique. La nutrition apparait donc comme un facteur crucial dans la prévention de la reprogrammation fœtale et du développement du syndrome métabolique. Puisque les mécanismes suggèrent que le stress oxydant agit principalement sur les métabolites du cycle de la méthionine pour altérer l’épigénétique, une supplémentation en ces molécules ainsi qu’en antioxydants permettrait de restaurer l’équilibre redox et épigénétique.
Resumo:
La chromatine possède une plasticité complexe et essentielle pour répondre à différents mécanismes cellulaires fondamentaux tels la réplication, la transcription et la réparation de l’ADN. Les histones sont les constituants essentiels de la formation des nucléosomes qui assurent le bon fonctionnement cellulaire d’où l’intérêt de cette thèse d’y porter une attention particulière. Un dysfonctionnement de la chromatine est souvent associé à l’émergence du cancer. Le chapitre II de cette thèse focalise sur la répression transcriptionnelle des gènes d’histones par le complexe HIR (HIstone gene Repressor) en réponse au dommage à l'ADN chez Saccharomyces cerevisiae. Lors de dommage à l’ADN en début de phase S, les kinases du point de contrôle Mec1, Tel1 et Rad53 s’assurent de bloquer les origines tardives de réplication pour limiter le nombre de collisions potentiellement mutagéniques ou cytotoxiques entre les ADN polymérases et les lésions persistantes dans l'ADN. Lorsque la synthèse totale d’ADN est soudainement ralentie par le point de contrôle, l’accumulation d'un excès d'histones nouvellement synthétisées est néfaste pour les cellules car les histones libres se lient de manière non-spécifique aux acides nucléiques. L'un des mécanismes mis en place afin de minimiser la quantité d’histones libres consiste à réprimer la transcription des gènes d'histones lors d'une chute rapide de la synthèse d'ADN, mais les bases moléculaires de ce mécanisme étaient très mal connues. Notre étude sur la répression des gènes d’histones en réponse aux agents génotoxiques nous a permis d’identifier que les kinases du point de contrôle jouent un rôle dans la répression des gènes d’histones. Avant le début de mon projet, il était déjà connu que le complexe HIR est requis pour la répression des gènes d’histones en phase G1, G2/M et lors de dommage à l’ADN en phase S. Par contre, la régulation du complexe HIR en réponse au dommage à l'ADN n'était pas connue. Nous avons démontré par des essais de spectrométrie de masse (SM) que Rad53 régule le complexe HIR en phosphorylant directement une de ses sous-unités, Hpc2, à de multiples résidus in vivo et in vitro. La phosphorylation d’Hpc2 est essentielle pour le recrutement aux promoteurs de gènes d’histones du complexe RSC (Remodels the Structure of Chromatin) dont la présence sur les promoteurs des gènes d'histones corrèle avec leur répression. De plus, nous avons mis à jour un nouveau mécanisme de régulation du complexe HIR durant la progression normale à travers le cycle cellulaire ainsi qu'en réponse aux agents génotoxiques. En effet, durant le cycle cellulaire normal, la protéine Hpc2 est très instable durant la transition G1/S afin de permettre la transcription des gènes d’histones et la production d'un pool d'histones néo-synthétisées juste avant l'initiation de la réplication de l’ADN. Toutefois, Hpc2 n'est instable que pour une brève période de temps durant la phase S. Ces résultats suggèrent qu'Hpc2 est une protéine clef pour la régulation de l'activité du complexe HIR et la répression des gènes d’histones lors du cycle cellulaire normal ainsi qu'en réponse au dommage à l’ADN. Dans le but de poursuivre notre étude sur la régulation des histones, le chapitre III de ma thèse concerne l’analyse globale de l’acétylation des histones induite par les inhibiteurs d’histone désacétylases (HDACi) dans les cellules normales et cancéreuses. Les histones désacétylases (HDACs) sont les enzymes qui enlèvent l’acétylation sur les lysines des histones. Dans plusieurs types de cancers, les HDACs contribuent à l’oncogenèse par leur fusion aberrante avec des complexes protéiques oncogéniques. Les perturbations causées mènent souvent à un état silencieux anormal des suppresseurs de tumeurs. Les HDACs sont donc une cible de choix dans le traitement des cancers engendrés par ces protéines de fusion. Notre étude de l’effet sur l’acétylation des histones de deux inhibiteurs d'HDACs de relevance clinique, le vorinostat (SAHA) et l’entinostat (MS-275), a permis de démontrer une augmentation élevée de l’acétylation globale des histones H3 et H4, contrairement à H2A et H2B, et ce, autant chez les cellules normales que cancéreuses. Notre quantification en SM de l'acétylation des histones a révélé de façon inattendue que la stœchiométrie d'acétylation sur la lysine 56 de l’histone H3 (H3K56Ac) est de seulement 0,03% et, de manière surprenante, cette stœchiométrie n'augmente pas dans des cellules traitées avec différents HDACi. Plusieurs études de H3K56Ac chez l’humain présentes dans la littérature ont rapporté des résultats irréconciliables. Qui plus est, H3K56Ac était considéré comme un biomarqueur potentiel dans le diagnostic et pronostic de plusieurs types de cancers. C’est pourquoi nous avons porté notre attention sur la spécificité des anticorps utilisés et avons déterminé qu’une grande majorité d’anticorps utilisés dans la littérature reconnaissent d’autres sites d'acétylation de l’histone H3, notamment H3K9Ac dont la stœchiométrie d'acétylation in vivo est beaucoup plus élevée que celle d'H3K56Ac. De plus, le chapitre IV fait suite à notre étude sur l’acétylation des histones et consiste en un rapport spécial de recherche décrivant la fonction de H3K56Ac chez la levure et l’homme et comporte également une évaluation d’un anticorps supposément spécifique d'H3K56Ac en tant qu'outil diagnostic du cancer chez l’humain.
Resumo:
Jusqu’à présent, la metformine a principalement été employée comme médicament contrôlant l’hyperglycémie des personnes atteintes de diabète de type II. Des études épidémiologiques ont démontré que les personnes, prenant de la metformine, développent moins de cancers. Par exemple, la prise de metformine réduit respectivement de 78% et de 46% les chances de développer un cancer hépatique ou pancréatique. Récemment, il a été montré que la metformine permet de réduire le développement de tumeur au niveau de la peau, suite à l’exposition à des rayons UVB. Dans cette étude, j’ai démontré que la présence de metformine permet une meilleure survie de la levure Saccharomyces cerevisiae suite à l’exposition à des rayons UVC ou UVA. De plus, j’ai démontré que la présence de metformine augmente le recrutement de l’histone Htz1 à la chromatine. Pour une souche htz1Δ, le niveau de survie suite à l’exposition aux rayons UVA est considérablement diminué. Htz1 permet le recrutement de Rad14 au site de dommages à l’ADN faits par les rayons UV. Htz1 est donc important pour la détection de ces sites. Enfin, le recrutement nucléaire de Rad14 en présence de metformine a considérablement augmenté. En absence de Rad14, le niveau de survie suite à l’exposition aux rayons UVA diminue significativement. Donc, Htz1 et Rad14 sont deux protéines clés dans la protection contre les rayons UV apportés par la metformine. En conclusion, avec les différents résultats de cette étude, il est possible de dire que la metformine permet une forme de protection contre les rayons UVC et UVA.
Resumo:
Les histones sont des protéines nucléaires hautement conservées chez les cellules des eucaryotes. Elles permettent d’organiser et de compacter l’ADN sous la forme de nucléosomes, ceux-ci representant les sous unités de base de la chromatine. Les histones peuvent être modifiées par de nombreuses modifications post-traductionnelles (PTMs) telles que l’acétylation, la méthylation et la phosphorylation. Ces modifications jouent un rôle essentiel dans la réplication de l’ADN, la transcription et l’assemblage de la chromatine. L’abondance de ces modifications peut varier de facon significative lors du developpement des maladies incluant plusieurs types de cancer. Par exemple, la perte totale de la triméthylation sur H4K20 ainsi que l’acétylation sur H4K16 sont des marqueurs tumoraux spécifiques a certains types de cancer chez l’humain. Par conséquent, l’étude de ces modifications et des événements determinant la dynamique des leurs changements d’abondance sont des atouts importants pour mieux comprendre les fonctions cellulaires et moléculaires lors du développement de la maladie. De manière générale, les modifications des histones sont étudiées par des approches biochimiques telles que les immuno-buvardage de type Western ou les méthodes d’immunoprécipitation de la chromatine (ChIP). Cependant, ces approches présentent plusieurs inconvénients telles que le manque de spécificité ou la disponibilité des anticorps, leur coût ou encore la difficulté de les produire et de les valider. Au cours des dernières décennies, la spectrométrie de masse (MS) s’est avérée être une méthode performante pour la caractérisation et la quantification des modifications d’histones. La MS offre de nombreux avantages par rapport aux techniques traditionnelles. Entre autre, elle permet d’effectuer des analyses reproductibles, spécifiques et facilite l’etude d’un large spectre de PTMs en une seule analyse. Dans cette thèse, nous présenterons le développement et l’application de nouveaux outils analytiques pour l’identification et à la quantification des PTMs modifiant les histones. Dans un premier temps, une méthode a été développée pour mesurer les changements d’acétylation spécifiques à certains sites des histones. Cette méthode combine l’analyse des histones intactes et les méthodes de séquençage peptidique afin de déterminer les changements d’acétylation suite à la réaction in vitro par l’histone acétyltransférase (HAT) de levure Rtt109 en présence de ses chaperonnes (Asf1 ou Vps75). Dans un second temps, nous avons développé une méthode d’analyse des peptides isomériques des histones. Cette méthode combine la LC-MS/MS à haute résolution et un nouvel outil informatique appelé Iso-PeptidAce qui permet de déconvoluer les spectres mixtes de peptides isomériques. Nous avons évalué Iso-PeptidAce avec un mélange de peptides synthétiques isomériques. Nous avons également validé les performances de cette approche avec des histones isolées de cellules humaines érythroleucémiques (K562) traitées avec des inhibiteurs d’histones désacétylases (HDACi) utilisés en clinique, et des histones de Saccharomyces cerevisiae liées au facteur d’assemblage de la chromatine (CAF-1) purifiées par chromatographie d’affinité. Enfin, en utilisant la méthode présentée précédemment, nous avons fait une analyse approfondie de la spécificité de plusieurs HATs et HDACs chez Schizosaccharomyces pombe. Nous avons donc déterminé les niveaux d’acétylation d’histones purifiées à partir de cellules contrôles ou de souches mutantes auxquelles il manque une HAT ou HDAC. Notre analyse nous a permis de valider plusieurs cibles connues des HATs et HDACs et d’en identifier de nouvelles. Nos données ont également permis de définir le rôle des différentes HATs et HDACs dans le maintien de l’équilibre d’acétylation des histones. Dans l’ensemble, nous anticipons que les méthodes décrites dans cette thèse permettront de résoudre certains défis rencontrés dans l’étude de la chromatine. De plus, ces données apportent de nouvelles connaissances pour l’élaboration d’études génétiques et biochimiques utilisant S. pombe.
Resumo:
Bioethanol is a liquid fuel obtained from fermentation of sugar/starch crops. Lignocellulosic biomass being less expensive is considered a future alternative for the food crops. One of the main challenges for the use of lignocellulosics is the development of an efficient pre-treatment process. Pretreatments are classified into three - physical, chemical, and biological pretreatment. Chemical process has not been proven suitable so far, due to high costs and production of undesired by-products. Biologically, hydrolysis can be enhanced by microbial or enzymatic pretreatment. Studies show that the edible mushrooms of Pleurotus sp. produce several extracellular enzymes which reduce the structural and chemical complexity of fibre. In the present study, P. ostreatus and P. eous were cultivated on paddy straw. Spent substrate left after mushroom cultivation was powdered and used for ethanol production. Saccharomyces sp. was used for fermentation studies. Untreated paddy straw was used as control. Production of ethanol from P. ostreatus substrate was 5.5 times more when compared to untreated paddy straw, while the spent substrate of P. eous gave 5 times increase in ethanol yield. Assays showed the presence of several extracellular enzymes in the spent substrate of both species, which together contributed to the increase in ethanol yield
Resumo:
DNA methyltransferases of type Dnmt2 are a highly conserved protein family with enigmatic function. The aim of this work was to characterize DnmA, the Dnmt2 methyltransferase in Dictyostelium discoideum, and further to investigate its implication in DNA methylation and transcriptional gene silencing. The genome of the social amoeba Dictyostelium encodes DnmA as the sole DNA methyltransferase. The enzyme bears all ten characteristic DNA methyltransferase motifs in its catalytic domain. The DnmA mRNA was found by RT-PCR to be expressed during vegetative growth and down regulated during development. Investigations using fluorescence microscopy showed that both DnmA-myc and DnmA-GFP fusions predominantly localised to the nucleus. The function of DnmA remained initially unclear, but later experiment revealed that the enzyme is an active DNA methyltransferase responsible for all DNA (cytosine) methylation in Dictyostelium. Neither in gel retardation assays, nor by the yeast two hybrid system, clues on the functionality of DnmA could be obtained. However, immunological detection of the methylation mark with an α - 5mC antibody gave initial evidence that the DNA of Dictyostelium was methylated. Furthermore, addition of 5-aza-cytidine as demethylating agent to the Dictyostelium medium and subsequent in vitro incubation of the DNA isolated from these cells with recombinant DnmA showed that the enzyme binds slightly better to this target DNA. In order to investigate further the function of the protein, a gene knock-out for dnmA was generated. The gene was successfully disrupted by homologous recombination, the knock-out strain, however, did not show any obvious phenotype under normal laboratory conditions. To identify specific target sequences for DNA methylation, a microarray analysis was carried out. Setting a threshold of at least 1.5 fold for differences in the strength of gene expression, several such genes in the knock-out strain were chosen for further investigation. Among the up-regulated genes were the ESTs representing the gag and the RT genes respectively of the retrotransposon skipper. In addition Northern blot analysis confirmed the up-regulation of skipper in the DnmA knock-out strain. Bisufite treatment and sequencing of specific DNA stretches from skipper revealed that DnmA is responsible for methylation of mostly asymmetric cytosines. Together with skipper, DIRS-1 retrotransposon was found later also to be methylated but was not present on the microarray. Furthermore, skipper transcription was also up-regulated in strains that had genes disrupted encoding components of the RNA interference pathway. In contrast, DIRS 1 expression was not affected by a loss of DnmA but was strongly increased in the strain that had the RNA directed RNA polymerase gene rrpC disrupted. Strains generated by propagating the usual wild type Ax2 and the DnmA knock-out cells over 16 rounds in development were analyzed for transposon activity. Northern blot analysis revealed activation for skipper expression, but not for DIRS-1. A large number of siRNAs were found to be correspondent to the DIRS-1 sequence, suggesting concerted regulation of DIRS-1 expression by RNAi and DNA methylation. In contrast, no siRNAs corresponding to the standard skipper element were found. The data show that DNA methylation plays a crucial role in epigenetic gene regulation in Dictyostelium and that different, partially overlapping mechanisms control transposon silencing for skipper and DIRS-1. To elucidate the mechanism of targeting the protein to particular genes in the Dictyostelium genome, some more genes which were up-regulated in the DnmA knock-out strain were analyzed by bisulfite sequencing. The chosen genes are involved in the multidrug response in other species, but their function in Dictyostelium is uncertain. Bisulfite data showed that two of these genes were methylated at asymmetrical C-residues in the wild type, but not in DnmA knock-out cells. This suggested that DNA methylation in Dictyostelium is involved not only in transposon regulation but also in transcriptional silencing of specific genes.
Resumo:
Heterochromatin Protein 1 (HP1) is an evolutionarily conserved protein required for formation of a higher-order chromatin structures and epigenetic gene silencing. The objective of the present work was to functionally characterise HP1-like proteins in Dictyostelium discoideum, and to investigate their function in heterochromatin formation and transcriptional gene silencing. The Dictyostelium genome encodes three HP1-like proteins (hcpA, hcpB, hcpC), from which only two, hcpA and hcpB, but not hcpC were found to be expressed during vegetative growth and under developmental conditions. Therefore, hcpC, albeit no obvious pseudogene, was excluded from this study. Both HcpA and HcpB show the characteristic conserved domain structure of HP1 proteins, consisting of an N-terminal chromo domain and a C-terminal chromo shadow domain, which are separated by a hinge. Both proteins show all biochemical activities characteristic for HP1 proteins, such as homo- and heterodimerisation in vitro and in vivo, and DNA binding activtity. HcpA furthermore seems to bind to K9-methylated histone H3 in vitro. The proteins thus appear to be structurally and functionally conserved in Dictyostelium. The proteins display largely identical subnuclear distribution in several minor foci and concentration in one major cluster at the nuclear periphery. The localisation of this cluster adjacent to the nucleus-associated centrosome and its mitotic behaviour strongly suggest that it represents centromeric heterochromatin. Furthermore, it is characterised by histone H3 lysine-9 dimethylation (H3K9me2), which is another hallmark of Dictyostelium heterochromatin. Therefore, one important aspect of the work was to characterise the so-far largely unknown structural organisation of centromeric heterochromatin. The Dictyostelium homologue of inner centromere protein INCENP (DdINCENP), co-localized with both HcpA and H3K9me2 during metaphase, providing further evidence that H3K9me2 and HcpA/B localisation represent centromeric heterochromatin. Chromatin immunoprecipitation (ChIP) showed that two types of high-copy number retrotransposons (DIRS-1 and skipper), which form large irregular arrays at the chromosome ends, which are thought to contain the Dictyostelium centromeres, are characterised by H3K9me2. Neither overexpression of full-length HcpA or HcpB, nor deletion of single Hcp isoforms resulted in changes in retrotransposon transcript levels. However, overexpression of a C-terminally truncated HcpA protein, assumed to display a dominant negative effect, lead to an increase in skipper retrotransposon transcript levels. Furthermore, overexpression of this protein lead to severe growth defects in axenic suspension culture and reduced cell viability. In order to elucidate the proteins functions in centromeric heterochromatin formation, gene knock-outs for both hcpA and hcpB were generated. Both genes could be successfully targeted and disrupted by homologous recombination. Surprisingly, the degree of functional redundancy of the two isoforms was, although not unexpected, very high. Both single knock-out mutants did not show any obvious phenotypes under standard laboratory conditions and only deletion of hcpA resulted in subtle growth phenotypes when grown at low temperature. All attempts to generate a double null mutant failed. However, both endogenous genes could be disrupted in cells in which a rescue construct that ectopically expressed one of the isoforms either with N-terminal 6xHis- or GFP-tag had been introduced. The data imply that the presence of at least one Hcp isoform is essential in Dictyostelium. The lethality of the hcpA/hcpB double mutant thus greatly hampered functional analysis of the two genes. However, the experiment provided genetic evidence that the GFP-HcpA fusion protein, because of its ability to compensate the loss of the endogenous HcpA protein, was a functional protein. The proteins displayed quantitative differences in dimerisation behaviour, which are conferred by the slightly different hinge and chromo shadow domains at the C-termini. Dimerisation preferences in increasing order were HcpA-HcpA << HcpA-HcpB << HcpB-HcpB. Overexpression of GFP-HcpA or a chimeric protein containing the HcpA C-terminus (GFP-HcpBNAC), but not overexpression of GFP-HcpB or GFP-HcpANBC, lead to increased frequencies of anaphase bridges in late mitotic cells, which are thought to be caused by telomere-telomere fusions. Chromatin targeting of the two proteins is achieved by at least two distinct mechanisms. The N-terminal chromo domain and hinge of the proteins are required for targeting to centromeric heterochromatin, while the C-terminal portion encoding the CSD is required for targeting to several other chromatin regions at the nuclear periphery that are characterised by H3K9me2. Targeting to centromeric heterochromatin likely involves direct binding to DNA. The Dictyostelium genome encodes for all subunits of the origin recognition complex (ORC), which is a possible upstream component of HP1 targeting to chromatin. Overexpression of GFP-tagged OrcB, the Dictyostelium Orc2 homologue, showed a distinct nuclear localisation that partially overlapped with the HcpA distribution. Furthermore, GFP-OrcB localized to the centrosome during the entire cell cycle, indicating an involvement in centrosome function. DnmA is the sole DNA methyltransferase in Dictyostelium required for all DNA(cytosine-)methylation. To test for its in vivo activity, two different cell lines were established that ectopically expressed DnmA-myc or DnmA-GFP. It was assumed that overexpression of these proteins might cause an increase in the 5-methyl-cytosine(5-mC)-levels in the genomic DNA due to genomic hypermethylation. Although DnmA-GFP showed preferential localisation in the nucleus, no changes in the 5-mC-levels in the genomic DNA could be detected by capillary electrophoresis.