893 resultados para Cyclic stimulation
Resumo:
The thesis analyze a subject of renewed interest in bioengineering, the research and analysis of exercise parameters that maximize the neuromuscular and cardiovascular involvement in vibration treatment. The research activity was inspired by the increasing use of device able to provide localized or whole body vibration (WBV). In particular, the focus was placed on the vibrating platform and the effect that the vibrations have on the neuromuscular system and cardiovascular system. The aim of the thesis is to evaluate the effectiveness and efficiency of vibration applied to the entire body, in particular, it was investigated the effect of WBV on: 1) Oxygen consumption during static and dynamic squat; 2) Resonant frequency of the muscle groups of the lower limbs; 3) Oxygen consumption and electromyographic signals during static and dynamic squat. In the first three chapters are explained the state of the art concerning vibration treatments, the effects of vibration applied to the entire body, with the explanation of the basic mechanisms (Tonic Vibration Reflex, TVR) and the neuromuscular system, with particular attention to the skeletal muscles and the stretch reflex. In the fourth chapter is illustrated the set-up used for the experiments and the software, implemented in LabWindows in order to control the platform and acquire the electromyographic signal. In the fifth chapter were exposed experiments undertaken during the PhD years. In particular, the analysis of Whole Body Vibration effect on neurological and cardiovascular systems showed interesting results. The results indicate that the static squat with WBV produced higher neuromuscular and cardiorespiratory system activation for exercise duration <60 sec. Otherwise, if the single bout duration was higher than 60 sec, the greater cardiorespiratory system activation was achieved during the dynamic squat with WBV while higher neuromuscular activation was still obtained with the static exercise.
Resumo:
NGAL (Neutrophil Gelatinase-associated Lipocalin ) is a protein of lipocalin superfamily. Recent literature focused on its biomarkers function in several pathological condition (acute and chronic kidney damage, autoimmune disease, malignancy). NGAL biological role is not well elucidated. Several are the demonstration of its bacteriostatic role. Recent papers have indeed highlight NGAL role in NFkB modulation. The aim of this study is to understand whether NGAL may exert a role in the activation (modulation) of T cell response through the regulation of HLA-G complex, a mediator of tolerance. From 8 healthy donors we obtained peripheral blood mononuclear cells (PBMCs) and we isolated by centrifugation on a Ficoll gradient. Cells were then treated with four concentrations of NGAL (40-320 ng/ml) with or without iron. We performed flow cytometry analysis and ELISA test. NGAL increased the HLA-G expression on CD4+ T cells, with an increasing corresponding to the dose. Iron effect is not of unique interpretation. NGAL adiction affects regulatory T cells increasing in vitro expansion of CD4+ CD25+ FoxP3+ cells. Neutralizing antibody against NGAL decreased HLA-G expression and reduced significantly CD4+ CD25+ FoxP3+ cells percentage. In conclusion, we provided in vitro evidence of NGAL involvement in cellular immunity. The potential role of NGAL as an immunomodulatory molecule has been evaluated: it has been shown that NGAL plays a pivotal role in the induction of immune tolerance up regulating HLA-G and T regulatory cells expression in healthy donors. As potential future scenario we highlight the in vivo role of NGAL in immunology and immunomodulation, and its possible relationship with immunosuppressive therapy efficacy, tolerance induction in transplant patients, and/or in other immunological disorders.
Resumo:
Efficient energy storage and conversion is playing a key role in overcoming the present and future challenges in energy supply. Batteries provide portable, electrochemical storage of green energy sources and potentially allow for a reduction of the dependence on fossil fuels, which is of great importance with respect to the issue of global warming. In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. rnrnSteps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well-defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of ‘immobilizing’ ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with pro-pylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length.rnrnAll model compounds were fully characterized, pure and thermally stable up to at least 235 °C, covering the requested broad range of glass transition temperatures from -78.1 °C up to +6.2 °C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity σ_dc and thus indicating comparable salt dissociation and rather independent motion of cations and ions.rnrnIn general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in combination to changes in glass transition temperatures. Though the glass transition temperatures of the blends are low, their conductivities are only in the range of typical polymer electrolytes. The highest σ_dc obtained at ambient temperatures was 6.0 x 10-6 S•cm-1, strongly suggesting a rather tight coordination of the lithium ions to the solvating 2-oxo-1,3-dioxolane moieties, supported by the increased σ_dc values for the oligo(ethylene oxide) based analogues.rnrnFurther insights into the mechanism of lithium ion dynamics were derived from 7Li and 13C Solid- State NMR investigations. While localized ion motion was probed by i.e. 7Li spin-lattice relaxation measurements with apparent activation energies E_a of 20 to 40 kJ/mol, long-range macroscopic transport was monitored by Pulsed-Field Gradient (PFG) NMR, providing an E_a of 61 kJ/mol. The latter is in good agreement with the values determined from bulk conductivity data, indicating the major contribution of ion transport was only detected by PFG NMR. However, the μm-diffusion is rather slow, emphasizing the strong lithium coordination to the carbonyl oxygens, which hampers sufficient ion conductivities and suggests exploring ‘softer’ solvating moieties in future electrolytes.rn
Resumo:
Bone is continually being removed and replaced through the actions of basic multicellular units (BMU). This constant upkeep is necessary to remove microdamage formed naturally due to fatigue and thus maintain the integrity of the bone. The repair process in bone is targeted, meaning that a BMU travels directly to the site of damage and repairs it. It is still unclear how targeted remodelling is stimulated and directed but it is highly likely that osteocytes play a role. A number of theories have been advanced to explain the microcrack osteocyte interaction but no complete mechanism has been demonstrated. Osteocytes are connected to each other by dendritic processes. The “scissors model" proposed that the rupture of these processes where they cross microcracks signals the degree of damage and the urgency of the necessary repair. In its original form it was proposed that under applied compressive loading, microcrack faces will be pressed together and undergo relative shear movement. If this movement is greater than the width of an osteocyte process, then the process will be cut in a “scissors like" motion, releasing RANKL, a cytokine known to be essential in the formation of osteoclasts from pre-osteoclasts. The main aim of this thesis was to investigate this theoretical model with a specific focus on microscopy and finite element modelling. Previous studies had proved that cyclic stress was necessary for osteocyte process rupture to occur. This was a divergence from the original “scissors model" which had proposed that the cutting of cell material occurred in one single action. The present thesis is the first study to show fatigue failure in cellular processes spanning naturally occurring cracks and it's the first study to estimate the cyclic strain range and relate it to the number of cycles to failure, for any type of cell. Rupture due to shear movement was ruled out as microcrack closing never occurred, as a result of plastic deformation of the bone. Fatigue failure was found to occur due to cyclic tensile stress in the locality of the damage. The strain range necessary for osteocyte process rupture was quantified. It was found that the lower the process strain range the greater the number of cycles to cell process failure. FEM modelling allowed to predict stress in the vicinity of an osteocyte process and to analyse its interaction with the bone surrounding it: simulations revealed evident creep effects in bone during cyclic loading. This thesis confirms and dismisses aspects of the “scissors model". The observations support the model as a viable mechanism of microcrack detection by the osteocyte network, albeit in a slightly modified form where cyclic loading is necessary and the method of rupture is fatigue failure due to cyclic tensile motion. An in depth study was performed focusing on microscopy analysis of naturally occurring cracks in bone and FEM simulation analysis of an osteocyte process spanning a microcrack in bone under cyclic load.
Resumo:
Die Förderung der Zelladhäsion durch sogenannte biomimetische Oberflächen wird in der Medizin als vielversprechender Ansatz gesehen, um Komplikationen wie z. B. Fremdkörperreaktionen nach der Implantation entgegenzuwirken. Neben der Immobilisierung einzelner Biomoleküle wie z. B. dem RGD-Peptid, Proteinen und Wachstumsfaktoren auf verschiedenen Materialien, konzentriert man sich derzeit in der Forschung auf die Co-Immobilisierung zweier Moleküle gleichzeitig. Hierbei werden die funktionellen Gruppen z. B. von Kollagen unter Verwendung von nur einer Kopplungschemie verwendet, wodurch die Kopplungseffizienz der einzelnen Komponenten nur begrenzt kontrollierbar ist. Das Ziel der vorliegenden Arbeit war die Entwicklung eines Immobilisierungsverfahrens, welches die unabhängige Kopplung zweier Faktoren kontrolliert ermöglicht. Dabei sollten exemplarisch das adhäsionsfördernde RGD-Peptid (Arginin-Glycin-Asparaginsäure) zusammen mit dem Wachstumsfaktor VEGF (Vascular Endothelial Growth Factor) auf Titan gebunden werden. In weiteren Experimenten sollten dann die pro-adhäsiven Faktoren Fibronektin, Kollagen, Laminin und Osteopontin immobilisiert und untersucht werden. rnDie Aminofunktionalisierung von Titan durch plasma polymerisierte Allylaminschichten wurde als Grundlage für die Entwicklung des nasschemischen Co-immobilisierungsverfahren verwendet. Für eine unabhängige und getrennte Anbindung der verschiedenen Biomoleküle stand in diesem Zusammenhang die Entwicklung eines geeigneten Crosslinker Systems im Vordergrund. Die Oberflächencharakterisierung der entwickelten Oberflächen erfolgte mittels Infrarot Spektroskopie, Surface Plasmon Resonance Spektroskopie (SPR), Kontaktwinkelmessungen, Step Profiling und X-Ray Photoelectron Spektroskopie (XPS). Zur Analyse der Anbindungsprozesse in Echtzeit wurden SPR-Kinetik Messungen durchgeführt. Die biologische Funktionalität der modifizierten Oberflächen wurde in vitro an Endothelzellen (HUVECs) und Osteoblasten (HOBs) und in vivo in einem Tiermodell-System an der Tibia von Kaninchen untersucht.rnDie Ergebnisse zeigen, dass alle genannten Biomoleküle sowohl einzeln auf Titan kovalent gekoppelt als auch am Bespiel von RGD und VEGF in einem getrennten Zwei-Schritt-Verfahren co-immobilisiert werden können. Des Weiteren wurde die biologische Funktionalität der gebundenen Faktoren nachgewiesen. Im Falle der RGD modifizierten Oberflächen wurde nach 7 Tagen eine geförderte Zelladhäsion von HUVECs mit einer signifikant erhöhten Zellbesiedlungsdichte von 28,5 % (p<0,05) gezeigt, wohingegen auf reinem Titan Werte von nur 13 % beobachtet wurden. Sowohl VEGF als auch RGD/VEGF modifizierte Proben wiesen im Vergleich zu Titan schon nach 24 Stunden eine geförderte Zelladhäsion und eine signifikant erhöhte Zellbesiedlungsdichte auf. Bei einer Besiedlung von 7,4 % auf Titan, zeigten VEGF modifizierte Proben mit 32,3 % (p<0,001) eine deutlichere Wirkung auf HUVECs als RGD/VEGF modifizierte Proben mit 13,2 % (p<0,01). Die pro-adhäsiven Faktoren zeigten eine deutliche Stimulation der Zelladhäsion von HUVECs und HOBs im Vergleich zu reinem Titan. Die deutlich höchsten Besiedlungsdichten von HUVECs konnten auf Fibronektin mit 44,6 % (p<0,001) und Kollagen mit 39,9 % (p<0,001) nach 24 Stunden beobachtet werden. Laminin zeigte keine und Osteopontin nur eine sehr geringe Wirkung auf HUVECs. Bei Osteoblasten konnten signifikant erhöhte Besiedlungsdichten im Falle aller pro-adhäsiven Faktoren beobachtet werden, jedoch wurden die höchsten Werte nach 7 Tagen auf Kollagen mit 90,6 % (p<0,001) und Laminin mit 86,5 % (p<0,001) im Vergleich zu Titan mit 32,3 % beobachtet. Die Auswertung der Tierexperimente ergab, dass die VEGF modifizierten Osteosyntheseplatten, im Vergleich zu den reinen Titankontrollen, eine gesteigerte Knochenneubildung auslösten. Eine solche Wirkung konnte für RGD/VEGF modifizierte Implantate nicht beobachtet werden. rnInsgesamt konnte gezeigt werden, dass mittels plasmapolymerisierten Allylamin Schichten die genannten Biomoleküle sowohl einzeln gebunden als auch getrennt und kontrolliert co-immobilisiert werden können. Des Weiteren konnte eine biologische Funktionalität für alle Faktoren nach erfolgter Kopplung in vitro gezeigt werden. Wider Erwarten konnte jedoch kein zusätzlicher biologischer Effekt durch die Co-immobilisierung von RGD und VEGF im Vergleich zu den einzeln immobilisierten Faktoren gezeigt werden. Um zu einer klinischen Anwendung zu gelangen, ist es nun notwendig, das entwickelte Verfahren in Bezug auf die immobilisierten Mengen der verschiedenen Faktoren hin zu optimieren. rn
Resumo:
The incorporation of modified nucleotides into ribonucleic acids (RNAs) is important for their structure and proper function. These modifications are inserted by distinct catalytic macromolecules one of them being Dnmt2. It methylates the Cytidine (C) at position 38 in tRNA to 5-methylcytidine (m5C). Dnmt2 has been a paradigm in this respect, because all of its nearest neighbors in evolution are DNA-cytosine C5-methyltransferases and methylate DNA, while its (own) DNA methyltransferase activity is the subject of controversial reports with rates varying between zero and very weak. This work determines whether the biochemical potential for DNA methylation is present in the enzyme. It was discovered that DNA fragments, when presented as covalent RNA:DNA hybrids in the structural context of a tRNA, can be more efficiently methylated than the corresponding natural tRNA substrate. Additional minor deviations from a native tRNA structure that were seen to be tolerated by Dnmt2 were used for a stepwise development of a composite system of guide RNAs that enable the enzyme to perform cytidine methylation on single stranded DNA in vitro. Furthermore, a proof-of-principle is presented for utilizing the S-adenosyl methionine-analog cofactor SeAdoYn with Dnmt2 to search for new possible substrates in a SELEX-like approach.rnIn innate immunity, nucleic acids can function as pathogen associated molecular patterns (PAMPs) recognized by pattern recognition receptors (PRRs). The modification pattern of RNA is the discriminating factor for toll-like receptor 7 (TLR7) to distinguish between self and non-self RNA of invading pathogens. It was found that a 2'-O-methylated guanosine (Gm) at position18, naturally occurring at this position in some tRNAs, antagonizes recognition by TLR7. In the second part of this work it is pointed out, that recognition extends to the next downstream nucleotide and the effectively recognized molecular detail is actually a methylated dinucleotide. The immune silencing effect of the ribose methylation is most pronounced if the dinucleotide motif is composed of purin nucleobases whereas pyrimidines diminish the effect. Similar results were obtained when the Gm modification was transposed into other tRNA domains. Point mutations abolishing base pairings important for a proper tertiary structure had no effect on the immune stimulatory potential of a Gm modified tRNA. Taken together these results suggest a processive type of RNA inspection by TLR7.rn
Resumo:
La tesi descrive la stimolazione magnetica transcranica, un metodo di indagine non invasivo. Nel primo capitolo ci si è soffermati sull’ anatomia e funzionalità del sistema nervoso sia centrale che periferico e sulle caratteristiche principali delle cellule neuronali. Nel secondo capitolo vengono descritte inizialmente le basi fisico-tecnologiche della strumentazione stessa, dando particolare attenzione ai circuiti che costituiscono gli stimolatori magnetici ed alle tipologie di bobine più utilizzate. Successivamente si sono definiti i principali protocolli di stimolazione evidenziandone le caratteristiche principali come, ampiezza, durata e frequenza dell’impulso. Nel terzo capitolo vengono descritti i possibili impieghi della stimolazione in ambito sperimentale e terapeutico. Nel quarto ed ultimo capitolo si evidenziano i limiti, della strumentazione e dell’analisi che la stessa permette, andando a definire i parametri di sicurezza, i possibili effetti indesiderati, il costo dell’apparecchiatura e l’uso combinato con altre tecniche specifiche
Resumo:
HP802-247 is a new-generation, allogeneic tissue engineering product consisting of growth-arrested, human keratinocytes (K) and fibroblasts (F) delivered in a fibrin matrix by a spray device.
Resumo:
To test the hypothesis that the pericellular fibronectin matrix is involved in mechanotransduction, we compared the response of normal and fibronectin-deficient mouse fibroblasts to cyclic substrate strain. Normal fibroblasts seeded on vitronectin in fibronectin-depleted medium deposited their own fibronectin matrix. In cultures exposed to cyclic strain, RhoA was activated, actin-stress fibers became more prominent, MAL/MKL1 shuttled to the nucleus, and mRNA encoding tenascin-C was induced. By contrast, these RhoA-dependent responses to cyclic strain were suppressed in fibronectin knockdown or knockout fibroblasts grown under identical conditions. On vitronectin substrate, fibronectin-deficient cells lacked fibrillar adhesions containing alpha5 integrin. However, when fibronectin-deficient fibroblasts were plated on exogenous fibronectin, their defects in adhesions and mechanotransduction were restored. Studies with fragments indicated that both the RGD-synergy site and the adjacent heparin-binding region of fibronectin were required for full activity in mechanotransduction, but not its ability to self-assemble. In contrast to RhoA-mediated responses, activation of Erk1/2 and PKB/Akt by cyclic strain was not affected in fibronectin-deficient cells. Our results indicate that pericellular fibronectin secreted by normal fibroblasts is a necessary component of the strain-sensing machinery. Supporting this hypothesis, induction of cellular tenascin-C by cyclic strain was suppressed by addition of exogenous tenascin-C, which interferes with fibronectin-mediated cell spreading.
Resumo:
The noxious stimulation response index (NSRI) is a novel anesthetic depth index ranging between 100 and 0, computed from hypnotic and opioid effect-site concentrations using a hierarchical interaction model. The authors validated the NSRI on previously published data.
Resumo:
Recent studies have shown that the nociceptive withdrawal reflex threshold (NWR-T) and the electrical pain threshold (EP-T) are reliable measures in pain-free populations. However, it is necessary to investigate the reliability of these measures in patients with chronic pain in order to translate these techniques from laboratory to clinic. The aims of this study were to determine the test-retest reliability of the NWR-T and EP-T after single and repeated (temporal summation) electrical stimulation in a group of patients with chronic low back pain, and to investigate the association between the NWR-T and the EP-T. To this end, 25 patients with chronic pain participated in three identical sessions, separated by 1 week in average, in which the NWR-T and the EP-T to single and repeated stimulation were measured. Test-retest reliability was assessed using intra-class correlation coefficient (ICC), coefficient of variation (CV), and Bland-Altman analysis. The association between the thresholds was assessed using the coefficient of determination (r (2)). The results showed good-to-excellent reliability for both NWR-T and EP-T in all cases, with average ICC values ranging 0.76-0.90 and average CV values ranging 12.0-17.7%. The association between thresholds was better after repeated stimulation than after single stimulation, with average r (2) values of 0.83 and 0.56, respectively. In conclusion, the NWR-T and the EP-T are reliable assessment tools for assessing the sensitivity of spinal nociceptive pathways in patients with chronic pain.
Resumo:
High arterial partial oxygen pressure (Pao(2)) oscillations within the respiratory cycle were described recently in experimental acute lung injury. This phenomenon has been related to cyclic recruitment of atelectasis and varying pulmonary shunt fractions. Noninvasive detection of Spo(2) (oxygen saturation measured by pulse oximetry) as an indicator of cyclic collapse of atelectasis, instead of recording Pao(2) oscillations, could be of clinical interest in critical care. Spo(2) oscillations were recorded continuously in three different cases of lung damage to demonstrate the technical feasibility of this approach. To deduce Pao(2) from Spo(2), a mathematical model of the hemoglobin dissociation curve including left and right shifts was derived from the literature and adapted to the dynamic changes of oxygenation. Calculated Pao(2) amplitudes (derived from Spo(2) measurements) were compared to simultaneously measured fast changes of Pao(2), using a current standard method (fluorescence quenching of ruthenium). Peripheral hemoglobin saturation was capable to capture changes of Spo(2) within each respiratory cycle. For the first time, Spo(2) oscillations due to cyclic recruitment of atelectasis within a respiratory cycle were determined by photoplethysmography, a technology that can be readily applied noninvasively in clinical routine. A mathematic model to calculate the respective Pao(2) changes was developed and its applicability tested.
Resumo:
Articular cartilage injuries and degeneration affect a large proportion of the population in developed countries world wide. Stem cells can be differentiated into chondrocytes by adding transforming growth factor-beta1 and dexamethasone to a pellet culture, which are unfeasible for tissue engineering purposes. We attempted to achieve stable chondrogenesis without any requirement for exogenous growth factors. Human mesenchymal stem cells were transduced with an adenoviral vector containing the SRY-related HMG-box gene 9 (SOX9), and were cultured in a three-dimensional (3D) hydrogel scaffold composite. As an additional treatment, mechanical stimulation was applied in a custom-made bioreactor. SOX9 increased the expression level of its known target genes, as well as its cofactors: the long form of SOX5 and SOX6. However, it was unable to increase the synthesis of sulfated glycosaminoglycans (GAGs). Mechanical stimulation slightly enhanced collagen type X and increased lubricin expression. The combination of SOX9 and mechanical load boosted GAG synthesis as shown by (35)S incorporation. GAG production rate corresponded well with the amount of (endogenous) transforming growth factor-beta1. Finally, cartilage oligomeric matrix protein expression was increased by both treatments. These findings provide insight into the mechanotransduction of mesenchymal stem cells and demonstrate the potential of a transcription factor in stem cell therapy.
Resumo:
Interaction between differentiating neurons and the extracellular environment guides the establishment of cell polarity during nervous system development. Developing neurons read the physical properties of the local substrate in a contact-dependent manner and retrieve essential guidance cues. In previous works we demonstrated that PC12 cell interaction with nanogratings (alternating lines of ridges and grooves of submicron size) promotes bipolarity and alignment to the substrate topography. Here, we investigate the role of focal adhesions, cell contractility, and actin dynamics in this process. Exploiting nanoimprint lithography techniques and a cyclic olefin copolymer, we engineered biocompatible nanostructured substrates designed for high-resolution live-cell microscopy. Our results reveal that neuronal polarization and contact guidance are based on a geometrical constraint of focal adhesions resulting in an angular modulation of their maturation and persistence. We report on ROCK1/2-myosin-II pathway activity and demonstrate that ROCK-mediated contractility contributes to polarity selection during neuronal differentiation. Importantly, the selection process confined the generation of actin-supported membrane protrusions and the initiation of new neurites at the poles. Maintenance of the established polarity was independent from NGF stimulation. Altogether our results imply that focal adhesions and cell contractility stably link the topographical configuration of the extracellular environment to a corresponding neuronal polarity state.