900 resultados para Cutting fluid jet
Resumo:
The three-dimensional molecular dynamics simulation method has been used to study the dynamic responses of an electrorheological (ER) fluid in oscillatory shear. The structure and related viscoelastic behaviour of the fluid are found to be sensitive to the amplitude of the strain. With the increase of the strain amplitude, the structure formed by the particles changes from isolated columns to sheet-like structures which may be perpendicular or parallel to the oscillating direction. Along with the structure evolution, the field-induced moduli decrease significantly with an increase in strain amplitude. The viscoelastic behaviour of the structures obtained in the cases of different strain amplitudes was examined in the linear response regime and an evident structure dependence of the moduli was found. The reason for this lies in the anisotropy of the arrangement of the particles in these structures. Short-range interactions between the particles cannot be neglected in determining the viscoelastic behaviour of ER fluids at small strain amplitude, especially for parallel sheets. The simulation results were compared with available experimental data and good agreement was reached for most of them.
Resumo:
The influence of the size distribution of particles on the viscous property of an electrorheological fluid has been investigated by the molecular dynamic simulation method. The shear stress of the fluid is found to decrease with the increase of the variance sigma(2) of the Gaussian distribution of the particle size, and then reach a steady value when sigma is larger than 0.5. This phenomenon is attributed to the influence of the particle size distribution on the dynamic structural evolution in the fluid as well as the strength of the different chain-like structures formed by the particles.
Resumo:
The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines (Hunt et al.). This sharp change in surface roughness is experienced by the atmosphere and ocean encountering a compacted sea ice edge. This paper presents a study of a dynamic sea ice edge responding to prescribed atmospheric and oceanic jet formation. An idealized analytical model of sea ice drift is developed and compared to a sea ice climate model [the Los Alamos Sea Ice Model (CICE)] run on an idealized domain. The response of the CICE model to jet formation is tested at various resolutions. It is found that the formation of atmospheric jets at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice drift jet in agreement with an observed sea ice drift jet (Johannessen et al.). The increase in ice drift speed is dependent upon the angle between the ice edge and wind and results in up to a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans have been analyzed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.
Resumo:
It has long been known that the urban surface energy balance is different to that of a rural surface, and that heating of the urban surface after sunset gives rise to the Urban Heat Island (UHI). Less well known is how flow and turbulence structure above the urban surface are changed during different phases of the urban boundary layer (UBL). This paper presents new observations above both an urban and rural surface and investigates how much UBL structure deviates from classical behaviour. A 5-day, low wind, cloudless, high pressure period over London, UK, was chosen for analysis, during which there was a strong UHI. Boundary layer evolution for both sites was determined by the diurnal cycle in sensible heat flux, with an extended decay period of approximately 4 h for the convective UBL. This is referred to as the “Urban Convective Island” as the surrounding rural area was already stable at this time. Mixing height magnitude depended on the combination of regional temperature profiles and surface temperature. Given the daytime UHI intensity of 1.5∘C, combined with multiple inversions in the temperature profile, urban and rural mixing heights underwent opposite trends over the period, resulting in a factor of three height difference by the fifth day. Nocturnal jets undergoing inertial oscillations were observed aloft in the urban wind profile as soon as the rural boundary layer became stable: clear jet maxima over the urban surface only emerged once the UBL had become stable. This was due to mixing during the Urban Convective Island reducing shear. Analysis of turbulent moments (variance, skewness and kurtosis) showed “upside-down” boundary layer characteristics on some mornings during initial rapid growth of the convective UBL. During the “Urban Convective Island” phase, turbulence structure still resembled a classical convective boundary layer but with some influence from shear aloft, depending on jet strength. These results demonstrate that appropriate choice of Doppler lidar scan patterns can give detailed profiles of UBL flow. Insights drawn from the observations have implications for accuracy of boundary conditions when simulating urban flow and dispersion, as the UBL is clearly the result of processes driven not only by local surface conditions but also regional atmospheric structure.
Resumo:
The detection of anthropogenic climate change can be improved by recognising the seasonality in the climate change response. This is demonstrated for the North Atlantic jet (zonal wind at 850 hPa, U850) and European precipitation responses projected by the CMIP5 climate models. The U850 future response is characterised by a marked seasonality: an eastward extension of the North Atlantic jet into Europe in November-April, and a poleward shift in May-October. Under the RCP8.5 scenario, the multi-model mean response in U850 in these two extended seasonal means emerges by 2035-2040 for the lower--latitude features and by 2050-2070 for the higher--latitude features, relative to the 1960-1990 climate. This is 5-15 years earlier than when evaluated in the traditional meteorological seasons (December--February, June--August), and it results from an increase in the signal to noise ratio associated with the spatial coherence of the response within the extended seasons. The annual mean response lacks important information on the seasonality of the response without improving the signal to noise ratio. The same two extended seasons are demonstrated to capture the seasonality of the European precipitation response to climate change and to anticipate its emergence by 10-20 years. Furthermore, some of the regional responses, such as the Mediterranean precipitation decline and the U850 response in North Africa in the extended winter, are projected to emerge by 2020-2025, according to the models with a strong response. Therefore, observations might soon be useful to test aspects of the atmospheric circulation response predicted by some of the CMIP5 models.
Resumo:
Liquid–vapour homogenisation temperatures of fluid inclusions in stalagmites are used for quantitative temperature reconstructions in paleoclimate research. Specifically for this application, we have developed a novel heating/cooling stage that can be operated with large stalagmite sections of up to 17 × 35 mm2 to simplify and improve the chronological reconstruction of paleotemperature time-series. The stage is designed for use of an oil immersion objective and a high-NA condenser front lens to obtain high-resolution images for bubble radius measurements. The temperature accuracy of the stage is better than ± 0.1 °C with a precision (reproducibility) of ± 0.02 °C.
Resumo:
A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.
Resumo:
We present a general approach based on nonequilibrium thermodynamics for bridging the gap between a well-defined microscopic model and the macroscopic rheology of particle-stabilised interfaces. Our approach is illustrated by starting with a microscopic model of hard ellipsoids confined to a planar surface, which is intended to simply represent a particle-stabilised fluid–fluid interface. More complex microscopic models can be readily handled using the methods outlined in this paper. From the aforementioned microscopic starting point, we obtain the macroscopic, constitutive equations using a combination of systematic coarse-graining, computer experiments and Hamiltonian dynamics. Exemplary numerical solutions of the constitutive equations are given for a variety of experimentally relevant flow situations to explore the rheological behaviour of our model. In particular, we calculate the shear and dilatational moduli of the interface over a wide range of surface coverages, ranging from the dilute isotropic regime, to the concentrated nematic regime.
Resumo:
Stalagmites are natural archives containing detailed information on continental climate variability of the past. Microthermometric measurements of fluid inclusion homogenisation temperatures allow determination of stalagmite formation temperatures by measuring the radius of stable laser-induced vapour bubbles inside the inclusions. A reliable method for precisely measuring the radius of vapour bubbles is presented. The method is applied to stalagmite samples for which the formation temperature is known. An assessment of the bubble radius measurement accuracy and how this error influences the uncertainty in determining the formation temperature is provided. We demonstrate that the nominal homogenisation temperature of a single inclusion can be determined with an accuracy of ±0.25 °C, if the volume of the inclusion is larger than 105 μm3. With this method, we could measure in a proof-of-principle investigation that the formation temperature of 10–20 yr old inclusions in a stalagmite taken from the Milandre cave is 9.87 ± 0.80 °C, while the mean annual surface temperature, that in the case of the Milandre cave correlates well with the cave temperature, was 9.6 ± 0.15 °C, calculated from actual measurements at that time, showing a very good agreement. Formation temperatures of inclusions formed during the last 450 yr are found in a temperature range between 8.4 and 9.6 °C, which corresponds to the calculated average surface temperature. Paleotemperatures can thus be determined within ±1.0 °C.
Resumo:
Six Australian native herbaceous perennial legumes (Lotus australis, Swainsona colutoides, Swainsona swainsonioides, Cullen tenax, Glycine tabacina and Kennedia prorepens) were assessed in the glasshouse for nutritive value, soluble condensed tannins and production of herbage in response to three cutting treatments (regrowth harvested every 4 and 6 weeks and plants left uncut for 12 weeks). The Mediterranean perennial legumes Medicago sativa and Lotus corniculatus were also included. Dry matter (DM) yield of some native legumes was comparable to L. corniculatus, but M. sativa produced more DM than all species except S. swainsonioides after 12 weeks of regrowth. Dry matter yield of all native legumes decreased with increased cutting frequency, indicating a susceptibility to frequent defoliation. Shoot in vitro dry matter digestibility (DMD) was high (>70%) in most native legumes, except G. tabacina (65%) and K. prorepens (55%). Crude protein ranged from 21-28% for all legumes except K. prorepens (12%). More frequent cutting resulted in higher DMD and crude protein in all species, except for the DMD of C. tenax and L. australis, which did not change. Concentrations of soluble condensed tannins were 2-9 g/kg DM in the Lotus spp., 10-18 g/kg DM in K. prorepens and negligible (<1 g/kg) in the other legumes. Of the native species, C. tenax, S. swainsonioides and L. australis showed the most promise for use as forage plants and further evaluation under field conditions is now warranted.
Resumo:
A strong correlation between the speed of the eddy-driven jet and the width of the Hadley cell is found to exist in the Southern Hemisphere, both in reanalysis data and in twenty-first-century integrations from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report multimodel archive. Analysis of the space–time spectra of eddy momentum flux reveals that variations in eddy-driven jet speed are related to changes in the mean phase speed of midlatitude eddies. An increase in eddy phase speeds induces a poleward shift of the critical latitudes and a poleward expansion of the region of subtropical wave breaking. The associated changes in eddy momentum flux convergence are balanced by anomalous meridional winds consistent with a wider Hadley cell. At the same time, faster eddies are also associated with a strengthened poleward eddy momentum flux, sustaining a stronger westerly jet in midlatitudes. The proposed mechanism is consistent with the seasonal dependence of the interannual variability of the Hadley cell width and appears to explain at least part of the projected twenty-first-century trends.
Resumo:
We study the effect of a thermal forcing confined to the midlatitudes of one hemisphere on the eddy-driven jet in the opposite hemisphere. We demonstrate the existence of an “interhemispheric teleconnection,” whereby warming (cooling) the Northern Hemisphere causes both the intertropical convergence zone (ITCZ) and the Southern Hemispheric midlatitude jet to shift northward (southward). The interhemispheric teleconnection is effected by a change in the asymmetry of the Hadley cells: as the ITCZ shifts away from the Equator, the cross-equatorial Hadley cell intensifies, fluxing more momentum toward the subtropics and sustaining a stronger subtropical jet. Changes in subtropical jet strength, in turn, alter the propagation of extratropical waves into the tropics, affecting eddy momentum fluxes and the eddy-driven westerlies. The relevance of this mechanism is demonstrated in the context of future climate change simulations, where shifts of the ITCZ are significantly related to shifts of the Southern Hemispheric eddy-driven jet in austral winter. The possible relevance of the proposed mechanism to paleoclimates is discussed, particularly with regard to theories of ice age terminations.
Resumo:
Substantial biases in shortwave cloud forcing (SWCF) of up to ±30 W m−2are found in the midlatitudes of the Southern Hemisphere in the historical simulations of 34 CMIP5 coupled general circulation models. The SWCF biases are shown to induce surface temperature anomalies localized in the midlatitudes, and are significantly correlated with the mean latitude of the eddy-driven jet, with a negative SWCF bias corresponding to an equatorward jet latitude bias. Aquaplanet model experiments are performed to demonstrate that the jet latitude biases are primarily induced by the midlatitude SWCF anomalies, such that the jet moves toward (away from) regions of enhanced (reduced) temperature gradients. The results underline the necessity of accurately representing cloud radiative forcings in state-of-the-art coupled models.
Resumo:
We review the effects of dynamical variability on clouds and radiation in observations and models and discuss their implications for cloud feedbacks. Jet shifts produce robust meridional dipoles in upper-level clouds and longwave cloud-radiative effect (CRE), but low-level clouds, which do not simply shift with the jet, dominate the shortwave CRE. Because the effect of jet variability on CRE is relatively small, future poleward jet shifts with global warming are only a second-order contribution to the total CRE changes around the midlatitudes, suggesting a dominant role for thermodynamic effects. This implies that constraining the dynamical response is unlikely to reduce the uncertainty in extratropical cloud feedback. However, we argue that uncertainty in the cloud-radiative response does affect the atmospheric circulation response to global warming, by modulating patterns of diabatic forcing. How cloud feedbacks can affect the dynamical response to global warming is an important topic of future research.
Resumo:
A strong relationship is found between changes in the meridional gradient of absorbed shortwave radiation (ASR) and Southern Hemispheric jet shifts in 21st century climate simulations of CMIP5 (Coupled Model Intercomparison Project phase 5) coupled models. The relationship is such that models with increases in the meridional ASR gradient around the southern midlatitudes, and therefore increases in midlatitude baroclinicity, tend to produce a larger poleward jet shift. The ASR changes are shown to be dominated by changes in cloud properties, with sea ice declines playing a secondary role. We demonstrate that the ASR changes are the cause, and not the result, of the intermodel differences in jet response by comparing coupled simulations with experiments in which sea surface temperature increases are prescribed. Our results highlight the importance of reducing the uncertainty in cloud feedbacks in order to constrain future circulation changes.