1000 resultados para Cu Nanowires
Resumo:
The experimental results show that the exchange coupling field H.. of NiFe/FeMn for TalNiFe/FeMn/Ta multilayers is higher than that for the spin valve multilayers Ta/NiFe/Cu/NiFe/FeMn/Ta. The composition and chemical states at the surface of Ta(12nm)/NiFe(7nm), Th(12nm)/NiFe(7nm)/Cu(4nm) and Ta(12nm)/NiFe(7nm)/Cu(3 nm)/NiFe(5 mn) were studied by using x-ray photoelectron spectroscopy. The results show that no element from the underlayers Boats out or segregates to the surface for Th(12 nm)/NiFe(7nm), Ta(12 nm)/NiFe(7nm)/Cu(4 mn). However, Cu atoms segregate to the surface of Ta(12 nm)/NiFe(7nm)/Cu(3nm)/NiFe(5nm) multilayers, i.e. to the NiFe/FeMn interface for Ta/NiFe/Cu/NiFe/FeMn/Ta multilayers. We believe that the presence of Cu atoms at the interface of NiFe/FeMn is one of the important factors which will cause the exchange coupling field H.. of Ta/NiFe/FeMn/Ta multilayers to be higher than that of Ta/NiFe/Cu/NiFe/FeMn/Ta multilayers.
Resumo:
High-density InAs nanowires embedded in an In0.52Al0.48As matrix are fabricated in situ by molecular beam epitaxy on (100) InP. The average cross section of the nanowires is 4.5 x 10 nm(2). The linear density is as high as 70 wires/mu m. The spatial alignment of the multilayer arrays exhibit strong anticorrelation in the growth direction. Large polarization anisotropic effect is observed in polarized photoluminescence measurements. (C) 1999 American Institute of Physics. [S0003-6951(99)04134-0].
Resumo:
Morphology evolution of high-index (331)A surfaces during molecular beam epitaxy (MBE) growth have been investigated in order to uncover their unique physic properties and fabricate spatially ordered low dimensional nanostructures. Atomic Force Microscope (AFM) measurements have shown that the step height and terrace width of GaAs layers increase monotonically with increasing substrate temperature in conventional MBE. However, this situation is reversed in atomic hydrogen-assisted MBE, indicating that step bunching is partly suppressed. We attribute this to the reduced surface migration length of Ga adatoms with atomic hydrogen. By using the step arrays formed on GaAs (331)A surfaces as the templates, we fabricated laterally ordered InGaAs self-aligned nanowires.
Resumo:
Boron-doped (B-doped) silicon nanowires (SiNWS) have been prepared and characterized by Raman scattering and photoluminescence (PL). B-doped SiNWS were grown by plasma enhanced chemical vapor deposition (PECVD), using diborane (B2H6) as the dopant gas. Raman spectra show a band at 480cm(-1),which is attributed to amorphous silicon. Photoluminescence at room temperature exhibits three distinct emission peaks at 1.34ev, 1.42ev, 1.47ev. Possible reason for these is suggested.
Resumo:
A new metal catalysis-free method of fabricating Si or SiO2 nanowires (NWs) compatible with Si CMOS technology was proposed by annealing SiOx (x < 2) films deposited by plasma -enhanced chemical vapor deposition (PECVD). The effects of the Si content (x value) and thickness of SiOx films, the annealing process and flowing gas ambient on the NW growth were studied in detail. The results indicated that the SiOx film of a thickness below 300 rim with x value close to 1 was most favorable for NW growth upon annealing at 1000-1150 degrees C in the flowing gas mixture of N-2 and H-2. NWs of 50-100nm in diameter and tens of micrometers in length were synthesized by this method. The formation mechanism was likely to be related to a new type of oxide assisted growth (OAG) mechanism, with Si nanoclusters in SiOx films after phase separation serving as the nuclei for the growth of NWs in SiOx films > 200nm, and SiO molecules from thin SiO, film decomposition inducing the NW growth in films < 100nm. An effective preliminary method to control NW growth direction was also demonstrated by etching trenches in SiOx films followed by annealing.
Resumo:
High quality silicon nanowires (SiNWs) were grown directly from n-(111) silicon single crystal substrate by using Au film as a metallic catalyst. The diameter and length of the formed nanowires are 30-60 nm and from several micrometers to sereral tens of micrometers, respectively. The effects of Au film thickness, annealing temperature, growth time and N-2 gas flow rate on the formation of the nanowires were experimentally investigated. The results confirmed that the silicon nanowires with controlled diameter, length, shape and orientation can be obtained via reasonably choosing and optimizing various technical conditions. The formation process of the silicon nanowires is analyzed qualitatively based on solid-liquid-solid growth mechanism.
Resumo:
Silicon nanowires (SiNWs) were grown directly from n-(111) single-crystal silicon (c-Si) substrate based on a solid-liquid-solid mechanism, and Au film was used as a metallic catalyst. The room temperature photoluminescence properties of SiNWs were observed by an Xe lamp with an exciting wavelength of 350 nm. The results show that the SiNWs exhibit a strongly blue luminescent band in the wavelength range 400-480 nm at an emission peak position of 420 nm. The luminescent mechanism of SiNWs indicates that the blue luminescence is attributed to the oxygen-related defects, which are in SiOx amorphous oxide shells around the crystalline core of SiNWs.
Resumo:
Chemical-looping reforming (CLR) is a technology that can be used for partial oxidation and steam reforming of hydrocarbon fuels. It involves the use of a metal oxide as an oxygen carrier, which transfers oxygen from combustion air to the fuel. Composite oxygen carriers of cerium oxide added with Fe, Cu, and Mn oxides were prepared by co-precipitation and investigated in a thermogravimetric analyzer and a fixed-bed reactor using methane as fuel and air as oxidizing gas. It was revealed that the addition of transition-metal oxides into cerium oxide can improve the reactivity of the Ce-based oxygen carrier. The three kinds of mixed oxides showed high CO and H-2 selectivity at above 800 degrees C. As for the Ce-Fe-O oxygen carrier, methane was converted to synthesis gas at a H-2/CO molar ratio close to 2:1 at a temperature of 800-900 degrees C; however, the methane thermolysis reaction was found on Ce-Cu-O and Ce-Mn-O oxygen carriers at 850-900 degrees C. Among the three kinds of oxygen carriers, Ce-Fe-O presented the best performance for methane CLR. On Ce-Fe-O oxygen carriers, the CO and H-2 selectivity decreased as the Fe content increased in the carrier particles. An optimal range of the Ce/Fe molar ratio is Ce/Fe > 1 for Ce-Fe-O oxygen carriers. Scanning electron microscopy (SEM) analysis revealed that the microstructure of the Ce-Fe-O oxides was not dramatically changed before and after 20 cyclic reactions. A small amount of Fe3C was found in the reacted Ce-Fe-O oxides by X-ray diffraction (XRD) analysis.