1000 resultados para Counting, foraminifera
Resumo:
Benthic foraminiferal assemblages of distinctive taxonomic composition occur at the top of benthic fossil-free black shales which correspond to the anoxic event at the Cenomanian/Turonian boundary in the North Atlantic abyssal DSDP/ODP sites 386, 398, 603 and 641. These assemblages consist of minute, thin-walled agglutinated foraminifera with low specific diversity of 2 to 4 species, variable abundance and dominance of few taxa (Haplophragmoides, Rhizammina and Glomospira). The species are inferred to be opportunistic, able to survive in low-oxygen environments and to be pioneers recolonizing the seafloor after cessation of bottom-water anoxia. Most species are characterized by test morphologies with high surface/volume ratios and single-layered wall structures, with loosely agglutinated grains, and small amounts of organic cement for agglutination. These features are best observed in material from ODP Hole 641A which has exceptional foraminiferai preservation because of its shallow burial depth. The successive appearance of benthic foraminifera after the anoxic event is probably controlled by the continuous reoccurrence of more oxygenated bottom- and interstitial-water conditions. With the final development of oxic bottom-water conditions in the Turonian, a rapid radiation of deep-water agglutinated foraminifera occurred in the North Atlantic.
Stable oxygen isotope record and relative abundances of planktonic foraminifera of ODP Hole 117-728A
Resumo:
High resolution stratigraphy based on oxygen isotope ratios of the planktonic foraminifers Neogloboquadrina dutertrei (d'Orbigny), Globigeriniodes ruber (d'Orbigny), and Globigerina bulloides (d'Orbigny), magnetic susceptibility, and calcium carbonate content covers the sedimentary record of ODP Hole 728A drilled on the Oman Margin from approximately 10 k.y. to 525 k.y., comprising isotopic stages 1-13. Below stage 13 isotopic stage boundaries cannot be defined with certainty in our data. Sediment accumulation rates were calculated from the isotopic record of N. dutertrei by matching it with the age model SPECMAP curve. During the glacial periods sediment accumulation rates were higher than during the interglacial periods, reflecting increased input from the shelf during low-stands of sea level and increased eolian input. Periodograms for the past 524 k.y. on oxygen isotope records of N. dutertrei, G. ruber, and G. bulloides, on calcium carbonate content, magnetic susceptibility, and on a foraminiferal fragmentation record show powers matching the Milankovitch periodicities. High powers are concentrated around 103 k.y. In the spectra of oxygen isotope ratios of N. dutertrei, magnetic susceptibility, and foraminiferal fragmentation these are significant at the 80% confidence level with respect to a first order autoregressive model. Power concentrations near 43 k.y., matching obliquity, are present but subdued in all spectra. Power concentrations near 23 k.y., matching precession, are significant in the spectra of the oxygen isotope record of N. dutertrei, magnetic susceptibility, and calcium carbonate content record. Fragmentation of planktonic foraminifers increased during the interglacial periods. This is attributed to dissolution of the tests in an expanded oxygen minimum zone (OMZ), where undersaturation of calcium carbonate is caused by enhanced production in the euphotic zone, which would suggest stronger monsoonal induced upwelling during interglacial periods. Extension of the OMZ could also be increased by outflow of low oxygen marginal basin bottom water.
Resumo:
Indicators of surface-water productivity and bottom-water oxygenation have been studied for the age interval from the latest Pleistocene to the Holocene at three holes (679D, 680B, and 68IB) located in the center and at the edges of an upwelling cell at approximately 11°S on the Peruvian continental margin. Upwelling activity was maximal at this latitude during d18O Stages 1 (lower part), 3, the upper part of 5, the lower part of 6, and 7, as documented by high diatom abundance. During these time intervals, the bottom water was poorly oxygenated, as documented by low diversity benthic foraminiferal assemblages that are dominated by B. seminuda s.l. Both surface- and bottom-water-circulation patterns appear to have changed rapidly over short time intervals. Due to changes in surface circulation, the intensity of upwelling decreased, thereby decreasing the concentration of nutrients, and reducing the supply of organic matter to the bottom. Radiolarians became more abundant in the surface waters, and the bottom-water environment was less depleted in oxygen, allowing for the establishment of more diverse benthic foraminiferal assemblages. Surface-water productivity was probably minimal during the early part of d18O Stages 5 and 9, as indicated by the increased abundance of planktonic foraminifers and pteropods and their subsequent preservation.
Resumo:
Trigger weight (TWC) and piston (PC) cores obtained from surveys of the three sites drilled during Ocean Drilling Program (ODP) Leg 105 were studied in detail for benthic foraminiferal assemblages, total carbonate (all sites), planktonic foraminiferal abundances (Sites 645 and 647), and stable isotopes (Sites 646 and 647). These high-resolution data provide the link between modern environmental conditions represented by the sediment in the TWC and the uppermost cores of the ODP holes. This link provides essential control data for interpretating late Pleistocene paleoceanographic records from these core holes. At Site 645 in Baffin Bay, local correlation is difficult because the area is dominated by ice-rafted deposits and by debris flows and/or turbidite sedimentation. At the two Labrador Sea sites (646 and 647), the survey cores and uppermost ODP cores can be correlated. High-resolution data from the site survey cores also provide biostratigraphic data that refine the interpretations compiled from core-catcher samples at each ODP site.
Resumo:
Sediment trap samples from OMEX 2 (49°N, 13°W) provide a continuous record of the seasonal succession of planktonic foraminifera in the midlatitude North Atlantic and reveal a complex relationship between periods of production and specific hydrographic conditions. Neogloboquadrina pachyderma dextral coiling (d.), Globigerina bulloides, and Globorotalia inflata are found in great numbers during both the spring and summer seasons, whereas Globigerina quinqueloba, Globorotalia hirsuta, Globorotalia scitula, and Globigerinita glutinata are associated predominantly with the increase in productivity during the spring bloom. Globigerinella aequilateralis, Orbulina universa, and Globigerinoides sacculifer are restricted to late summer conditions following the establishment of a warm, well-stratified surface ocean. An annually integrated fauna from the sediment trap, comprising ~13,000 individuals, is used to evaluate the accuracy of five faunal-based statistical methods of paleotemperature estimation. All of the temperature reconstruction techniques produce estimates of ~16°C and ~11°C for summer and winter surface temperature, respectively, which are in excellent agreement with regional hydrographic data and suggest that the sediment trap assemblage is well represented in the core top faunas. Analysis of the key species that dominate the OMEX 2 sediment trap fauna, G. bulloides, G. inflata, and N. pachyderma d., based on d18O derived temperatures from North Atlantic core top samples, suggests that seasonal variations in planktonic foraminiferal production are nonuniform across the midlatitudes and that this is likely to complicate reconstructing past seasonal hydrographic dynamics using these taxa.
Resumo:
The impact of an asteroid at the Cretaceous/Paleogene (K/Pg) boundary triggered dramatic biotic, biogeochemical and sedimentological changes in the oceans that have been intensively studied. Paleo-biogeographical differences in the biotic response to the impact and its environmental consequences, however, have been less well documented. We present a high-resolution analysis of benthic foraminiferal assemblages at Southern Ocean ODP Site 690 (Maud Rise, Weddell Sea, Antarctica). At this high latitude site, late Maastrichtian environmental variability was high, but benthic foraminiferal assemblages were not less diverse than at lower latitudes, in contrast to those of planktic calcifiers. Also in contrast to planktic calcifiers, benthic foraminifera did not suffer significant extinction at the K/Pg boundary, but show transient assemblage changes and decreased diversity. At Site 690, the extinction rate was even lower (~3%) than at other sites. The benthic foraminiferal accumulation rate varied little across the K/Pg boundary, indicating that food supply to the sea floor was affected to a lesser extent than at lower latitude sites. Compared to Maastrichtian assemblages, Danian assemblages have a lower diversity and greater relative abundance of heavily calcified taxa such as Stensioeina beccariiformis and Paralabamina lunata. This change in benthic foraminiferal assemblages could reflect post-extinction proliferation of different photosynthesizers (thus food for the benthos) than those dominant during the Late Cretaceous, therefore changes in the nature rather than in the amount of the organic matter supplied to the seafloor. However, severe extinction of pelagic calcifiers caused carbonate supersaturation in the oceans, thus might have given competitive advantage to species with large, heavily calcified tests. This indirect effect of the K/Pg impact thus may have influenced the deep-sea dwellers, documenting the complexity of the effects of major environmental disturbance.
Resumo:
Although it is well known that the Paleocene/Eocene thermal maximum (PETM) coincided with a major benthic foraminiferal extinction event, the detailed pattern of the faunal turnover has not yet been clarified. Our high-resolution benthic foraminiferal and carbon isotope analyses at the low latitude Pacific Ocean Shatsky Rise have revealed the following record of major faunal transitions: (1) An initial turnover which involved the benthic foraminiferal extinction event (BFE). The BFE, marked by a sharp transition from Pre-extinction fauna to Disaster fauna represented by small-sized Bolivina gracilis, expresses the onset of the PETM and the abrupt extinction of about 30% of taxa. This faunal transition lasted about 45-74 kyr after the initiation of the PETM and was followed by: (2) the appearance of Opportunistic fauna represented by Quadrimorphina profunda, which existed for about 74-91 kyr after the initiation of the PETM. These two faunas, which appeared after the extinction event, are characterized by low diversity and dwarfism, possibly due to lowered oxygen condition and decreased surface productivity. The second pronounced turnover involved the gradual recovery from Opportunistic Fauna to the establishment of Recovery fauna, which coincided with the recovery about 83-91 kyr after its initiation.
Resumo:
Reworked shallow-water foraminifers that settled on the upper slope of the central Great Barrier Reef at Site 821 (water depth, 212.6 m) were used as indicators of the paleoclimatic and paleoenvironmental conditions that have controlled the Pleistocene evolution of the adjacent platform. Throughout the 400-m-thick sequence drilled, the nature, composition, and distribution of the shallow-water foraminiferal assemblages studied indicate that (1) all the species recorded are at present living in diverse tropical, reef-related areas of the Indo-Pacific and Atlantic provinces; (2) the composition of the microfaunal taphocoenoses is almost identical between the different stratigraphic intervals studied and the modern Great Barrier Reef environments; (3) inner-neritic, tropical environments have continued to develop since the middle Pleistocene; (4) high- to moderate-energy platform edges occurred repeatedly throughout Pleistocene time. These factors may suggest that, since the beginning of the Pleistocene, several reef-like tracts have grown successively on the central area of the northeastern Australian shelf edge. These tracts probably had a sufficiently evolved morphological zonation to act as shelters for foraminiferal biocoenoses of high species diversity.
Resumo:
Deep-sea benthic foraminifera show important but transient assemblage changes at the Cretaceous/Paleogene (K/Pg) boundary, when many biota suffered severe extinction. We quantitatively analyzed benthic foraminiferal assemblages from lower bathyal-upper abyssal (1500-2000 m) northwest Pacific ODP Site 1210 (Shatsky Rise) and compared the results with published data on assemblages at lower bathyal (~ 1500 m) Pacific DSDP Site 465 (Hess Rise) to gain insight in paleoecological and paleoenvironmental changes at that time. At both sites, diversity and heterogeneity rapidly decreased across the K/Pg boundary, then recovered. Species assemblages at both sites show a similar pattern of turnover from the uppermost Maastrichtian into the lowermost Danian: 1) The relative abundance of buliminids (indicative of a generally high food supply) increases towards the uppermost Cretaceous, and peaks rapidly just above the K/Pg boundary, coeval with a peak in benthic foraminiferal accumulation rate (BFAR), a proxy for food supply. 2) A peak in relative abundance of Stensioeina beccariiformis, a cosmopolitan form generally more common at the middle than at the lower bathyal sites, occurs just above the buliminid peak. 3) The relative abundance of Nuttallides truempyi, a more oligotrophic form, decreases at the boundary, then increases above the peak in Stensioeina beccariiformis. The food supply to the deep sea in the Pacific Ocean thus apparently increased rather than decreased in the earliest Danian. The low benthic diversity during a time of high food supply indicates a stressed environment. This stress might have been caused by reorganization of the planktic ecosystem: primary producer niches vacated by the mass extinction of calcifying nannoplankton may have been rapidly (<10 kyr) filled by other, possibly opportunistic, primary producers, leading to delivery of another type of food, and/or irregular food delivery through a succession of opportunistic blooms. The deep-sea benthic foraminiferal data thus are in strong disagreement with the widely accepted hypothesis that the global deep-sea floor became severely food-depleted following the K/Pg extinction due to the mass extinction of primary producers ("Strangelove Ocean Model") or to the collapse of the biotic pump ("Living Ocean Model").
Resumo:
Lithology, lithic petrology, planktonic foraminiferal abundances, and clastic grain sizes have been determined in a 30 m-long core recovered from the Barra Fan off northwest Scotland. The record extends back to around 45 kyr B.P., with sedimentation rates ranging between 50 and 200 cm/kyr. The abundance of ice-rafted debris indicates 16 glacimarine events, including temporal equivalents to Heinrich events 1-4. Enhanced concentrations of basaltic material derived from the British Tertiary Province suggest that the glacimarine sediments record variations in a glacial source on the Hebrides shelf margin. Glacimarine zones are separated by silty intervals with high planktonic foraminifera concentrations that reflect an interstadial circulation regime in the Rockall Trough. The results suggest that the last British Ice Sheet fluctuated with a periodicity of 2000-3000 years, in common with the Dansgaard-Oeschger climate cycle.
Resumo:
Changes in the local freshwater budget over the last 22,000 years have been estimated from a sediment core located in the southern South China Sea (SCS) using a combined approach of Mg/Ca and oxygen isotopes on the planktonic foraminifera Globigerinoides ruber (white) sensu stricto (s.s.). Core MD01-2390 (06°28,12N, 113°24,56E; water depth 1591 m) is located near the glacial paleo-river mouths of the Baram, Rajang and North Sunda/Molengraaff Rivers that drained the exposed Sunda Shelf. The delta18Oseawater record reveals lower average values (-0.96±0.18 per mil) during the Last Glacial Maximum (LGM) when compared with modern values (-0.54±0.18 per mil). Low salinity during the LGM is interpreted to reflect a higher freshwater contribution due to a greater proximity of the core site to the mouths of the Baram, Rajang and North Sunda/Molengraaff Rivers at that time. A general deglacial increasing trend in salinity due to the progressive landward displacement of the coastline during deglacial shelf flooding is punctuated by several short-term shifts towards higher and lower salinity that are likely related to abrupt changes in the intensity of the East Asian summer monsoon. Thus, the deglacial delta18Oseawater changes reflect the combined effects of sea-level-induced environmental changes on the shelf (e.g. phases of retreat and breakdown of the shelf drainage systems) and East Asian monsoon climate change. Lower salinity than at present during the Early Holocene may be attributed to an increase in summer monsoonal precipitation that is corroborated by previous marine and terrestrial studies that report a Preboreal-Early Holocene monsoon optimum in the Asian monsoon region.