998 resultados para Conscious rats
Resumo:
PURPOSE: To assess the efficacy of a topical cyclosporine A (CsA), water-soluble prodrug, for promoting the survival of allogenic rat corneal grafts after penetrating keratoplasty (PKP). METHODS: Corneas of Brown-Norway rats (donors) were transplanted to Lewis rats (recipients). Transplanted rats were divided in three treatment groups: group I (PBS) and group II (0.26% Debio088) received drops five times per day. Group III received a daily intramuscular CsA injection (10 mg/kg/day). Blood CsA concentrations were measured on days 2 and 14. On day 4, 10, 13 after PKP, grafts were scored for corneal transparency, edema and extent of neovascularization. An opacity score of greater than or equal to 3 was considered as a nonreversible graft rejection process. On day 14, the experimental eyes were processed for histology. RESULTS: On day 13, 12 of the 18 corneal transplants (67%) in group I showed irreversible graft rejection. Three of 18 transplants (19%) in group II and 5 of 16 transplants (28%) in group III showed irreversible graft rejection (p=0.013/p=0.019, OR=0.14/0.06 versus vehicle). Each mean clinical score for edema, opacity, and neovessels in group II were significantly lower than those of the grafts in group I (respectively p=0.010, p=0.013, p=0.024) and III except for neovessels (respectively p=0.002, p=0.001, p=0.057). Histology confirmed the clinical results. The mean CsA blood levels for groups II and III were, respectively 54+/-141 mug/l and 755+/-319 mug/l on day 2 and 14+/-34 mug/l and 1318+/-463 mug/l on day 14. CONCLUSIONS: Debio088 CsA prodrug drops given five times daily are as effective as intramuscular injection of 10 mg/kg/day for the prevention of acute corneal graft rejection in rats.
Resumo:
Glutathione (GSH) metabolism dysfunction is one risk factor in schizophrenia. A transitory brain GSH deficit was induced in Wistar (WIS) and mutant (ODS; lacking ascorbic acid synthesis) rats using BSO (l-buthionine-(S,R)-sulfoximine) from post-natal days 5-16. When GSH was re-established to physiological levels, juvenile BSO-ODS rats were impaired in the water maze task. Long after treatment cessation, adult BSO-WIS/-ODS rats showed impaired place discrimination in the homing board with distributed visual or olfactory cues. Their accuracy was restored when a single cue marked the trained position. Similarly, more working memory errors were made by adult BSO-WIS in the radial maze when several olfactory cues were present. These results reveal that BSO rats did not suffer simple sensory impairment. They were selectively impaired in spatial memory when the task required the integration of multimodal or olfactory cues. These results, in part, resemble some of the reported olfactory discrimination and cognitive impairment in schizophrenia.
Resumo:
Young and adult Long Evans rats were tested in the water maze according to two different procedures: half of the subjects were given one session of four trials a day for 6 days, whereas the other subjects had the same amount of training massed in 1 day. For both conditions, a 14-day retention interval was then introduced to test long-term memory. This was followed by a four-trial reversal session. All groups showed a significant learning curve, but escape latencies were shorter for the adult than for the young rats, without differential effect of the training procedure. A first probe trial (PT1) confirmed similar accurate short-term retention in all the groups. But unimpaired long-term memory was only seen in the adult rats trained with the spaced procedure. The young rats trained over 1 day also showed some retention of the platform location after 14 days, but not the other two groups. Reversal acquisition of the new platform location was rapid in the four groups. These results indicate that although accurate short-term spatial memory in the water maze is seen after a 1-day massed training in both age groups, unimpaired long-term retention is only observed in adult rats trained with 24-h inter-session intervals.
Resumo:
BACKGROUND: Pulmonary vascular diseases are increasingly recognised as important clinical conditions. Pulmonary hypertension associated with a range of aetiologies is difficult to treat and associated with progressive morbidity and mortality. Current therapies for pulmonary hypertension include phosphodiesterase type 5 inhibitors, endothelin receptor antagonists, or prostacyclin mimetics. However, none of these provide a cure and the clinical benefits of these drugs individually decline over time. There is, therefore, an urgent need to identify new treatment strategies for pulmonary hypertension. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that the PPARbeta/delta agonist GW0742 induces vasorelaxation in systemic and pulmonary vessels. Using tissue from genetically modified mice, we show that the dilator effects of GW0742 are independent of the target receptor PPARbeta/delta or cell surface prostacyclin (IP) receptors. In aortic tissue, vascular relaxant effects of GW0742 were not associated with increases in cGMP, cAMP or hyperpolarisation, but were attributed to inhibition of RhoA activity. In a rat model of hypoxia-induced pulmonary hypertension, daily oral dosing of animals with GW0742 (30 mg/kg) for 3 weeks significantly reduced the associated right heart hypertrophy and right ventricular systolic pressure. GW0742 had no effect on vascular remodelling induced by hypoxia in this model. CONCLUSIONS/SIGNIFICANCE: These observations are the first to show a therapeutic benefit of 'PPARbeta/delta' agonists in experimental pulmonary arterial hypertension and provide pre-clinical evidence to favour clinical trials in man.
Resumo:
Age-related cognitive impairments were studied in rats kept in semi-enriched conditions during their whole life, and tested during ontogeny and adult life in various classical spatial tasks. In addition, the effect of intrahippocampal grafts of fetal septal-diagonal band tissue, rich in cholinergic neurons, was studied in some of these subjects. The rats received bilateral cell suspensions when aged 23-24 months. Starting 4 weeks after grafting, they were trained during 5 weeks in an 8-arm maze made of connected plexiglass tunnels. No age-related impairment was detected during the first eight trials, when the maze shape was that of a classical radial maze in which the rats had already been trained when young. The older rats were impaired when the task was made more difficult by rendering two arms parallel to each other. They developed an important neglect of one of the parallel tunnels resulting in a high amount of errors before completion of the task. In addition, the old rats developed a systematic response pattern of visits to adjacent arms in a sequence, which was not observed in the younger subjects. None of these behaviours were observed in the old rats with a septal transplant. Sixteen weeks after grafting, another experiment was conducted in a homing hole board task. Rats were allowed to escape from a large circular arena through one hole out of many, and to reach home via a flexible tube under the table. The escape hole was at a fixed position according to distant room cues, and olfactory cues were made irrelevant by rotating the table between the trials. An additional cue was placed on the escape position. No age-related difference in escape was observed during training. During a probe trial with no hole connected and no proximal cue present, the old untreated rats were less clearly focussed on the training sector than were either the younger or the grafted old subjects. Taken together, these experiments indicate that enriched housing conditions and spatial training during adult life do not protect against all age-related deterioration in spatial ability. However, it might be that the considerable improvement observed in the grafted subjects results from an interaction between the graft treatment and the housing conditions.
Resumo:
Abstract Purpose: XG-102, a TAT-coupled dextrogyre peptide inhibiting the c-Jun N-terminal kinase, was shown efficient in the treatment of experimental uveitis. Preclinical studies are now performed to determine optimal XG-102 dose and route of administration in endotoxin-induced uveitis (EIU) in rats with the purpose of clinical study design. METHODS: EIU was induced in Lewis rats by lipopolysaccharides (LPS) injection. XG-102 was administered at the time of LPS challenge by intravenous (IV; 3.2, 35 or 355 μg/injection), intravitreal (IVT; 0.08, 0.2 or 2.2 μg/eye), or subconjunctival (SCJ; 0.2, 1.8 or 22 μg/eye) routes. Controls received either the vehicle (saline) or dexamethasone phosphate injections. Efficacy was assessed by clinical scoring, infiltrating cells count, and expression of inflammatory mediators [inducible nitric oxide synthase (iNOS), cytokine-induced neutrophil chemoattractant-1 (CINC-1)]. The effect of XG-102 on phosphorylation of c-Jun was evaluated by Western blot. RESULTS: XG-102 demonstrated a dose-dependent anti-inflammatory effect in EIU after IV and SCJ administrations. Respective doses of 35 and 1.8 μg were efficient as compared with the vehicle-injected controls, but only the highest doses, respectively 355 and 22 μg, were as efficient as dexamethasone phosphate. After IVT injections, the anti-inflammatory effect of XG-102 was clinically evaluated similar to the corticoid's effect with all the tested doses. Regardless of the administration route, the lowest efficient doses of XG-102 significantly decreased the ration of phospho c-Jun/total c-Jun, reduced cells infiltration in the treated eyes, and significantly downregulated iNOS and CINC-1 expression in the retina. CONCLUSION: These results confirm that XG-102 peptide has potential for treating intraocular inflammation. SCJ injection appears as a good compromise to provide a therapeutic effect while limiting side effects.
Resumo:
OBJECTIVES: Calcium-sensing receptors (CaSRs) have been localized in the juxtaglomerular apparatus where they may contribute to the regulation of renin release. In the present study, we investigated the in-vitro and in-vivo effects of the calcimimetic R-568 on renin release. METHODS: In vitro, the effect of calcimimetics on renin release was assessed by incubating freshly isolated rat juxtaglomerular cells with or without R-568 (1 and 10 mumol/l) in serum-free medium in the presence or absence of forskolin or CaCl2. In vivo, we measured the impact of R-568 (20 ng/min intravenously) on the acute changes in plasma renin activity (PRA) induced by either a 90 min infusion of the angiotensin-converting enzyme inhibitor captopril, or the beta-receptor agonist isoproterenol, or of a vehicle in or after a furosemide challenge in conscious Wistar rats. RESULTS: In vitro, R-568 dose-dependently blunted renin release, but also reduced the increase in renin due to forskolin (P < 0.01). Both isoproterenol and enalapril increased in vivo PRA to 3.1 +/- 0.3 and 3.7 +/- 0.5 ng Ang I/ml per h, respectively (P < 0.01), compared with vehicle (1.5 +/- 0.2 ng Ang I/ml per h). R-568 significantly reduced PRA to 2.1 +/- 0.1 ng/ml per h in isoproterenol-treated rats and to 1.6 +/- 0.2 ng/ml per h in enalapril-treated rats (P < 0.05). In low-salt treated animals, acute infusion of furosemide increased PRA from 8.7 +/- 3.2 to 18.6 +/- 2.3, whereas R-568 partially blunted this rise to 11.2 +/- 1.5 (P = 0.02). In vivo, R-568 significantly lowered serum calcium and PTH1-84, but the drug-induced changes in PRA were independent of the changes in calcium and parathyroid hormone. CONCLUSION: After the recent discovery of CaSRs in juxtaglomerular cells of mice, our results confirm the presence of such receptors in rats and demonstrate that these receptors modulate renin release both in vitro and in vivo. This suggests that CaSRs play a role as a regulatory pathway of renin release.
Resumo:
Two different theories of migraine aura exist: In the vascular theory of Wolff, intracerebral vasoconstriction causes migraine aura via energy deficiency, whereas in the neuronal theory of Leão and Morison, spreading depression (SD) initiates the aura. Recently, it has been shown that the cerebrovascular constrictor endothelin-1 (ET-1) elicits SD when applied to the cortical surface, a finding that could provide a bridge between the vascular and the neuronal theories of migraine aura. Several arguments support the notion that ET-1-induced SD results from local vasoconstriction, but definite proof is missing. If ET-1 induces SD via vasoconstriction/ischemia, then neuronal damage is likely to occur, contrasting with the fact that SD in the otherwise normal cortex is not associated with any lesion. To test this hypothesis, we have performed a comprehensive histologic study of the effects of ET-1 when applied topically to the cerebral cortex of halothane-anesthetized rats. Our assessment included histologic stainings and immunohistochemistry for glial fibrillary acidic protein, heat shock protein 70, and transferase dUTP nick-end labeling assay. During ET-1 application, we recorded (i) subarachnoid direct current (DC) electroencephalogram, (ii) local cerebral blood flow by laser-Doppler flowmetry, and (iii) changes of oxyhemoglobin and deoxyhemoglobin by spectroscopy. At an ET-1 concentration of 1 muM, at which only 6 of 12 animals generated SD, a microarea with selective neuronal death was found only in those animals demonstrating SD. In another five selected animals, which had not shown SD in response to ET-1, SD was triggered at a second cranial window by KCl and propagated from there to the window exposed to ET-1. This treatment also resulted in a microarea of neuronal damage. In contrast, SD invading from outside did not induce neuronal damage in the absence of ET-1 (n = 4) or in the presence of ET-1 if ET-1 was coapplied with BQ-123, an ET(A) receptor antagonist (n = 4). In conclusion, SD in presence of ET-1 induced a microarea of selective neuronal necrosis no matter where the SD originated. This effect of ET-1 appears to be mediated by the ET(A) receptor.
Resumo:
Converging evidence suggests that recurrent excessive calorie restriction causes binge eating by promoting behavioral disinhibition and overeating. This interpretation suggests that cognitive adaptations may surpass physiological regulations of metabolic needs after recurrent cycles of dieting and binging. Intermittent access to palatable food has long been studied in rats, but the consequences of such diet cycling procedures on the cognitive control of food seeking remain unclear. Female Wistar rats were divided in two groups matched for food intake and body weight. One group received standard chow pellets 7 days/week, whereas the second group was given chow pellets for 5 days and palatable food for 2 days over seven consecutive weeks. Rats were also trained for operant conditioning. Intermittent access to palatable food elicited binging behavior and reduced intake of normal food. Rats with intermittent access to palatable food failed to exhibit anxiety-like behaviors in the elevated plus maze, but displayed reduced locomotor activity in the open field and developed a blunted corticosterone response following an acute stress across the diet procedure. Trained under a progressive ratio schedule, both groups exhibited the same motivation for sweetened food pellets. However, in contrast to controls, rats with a history of dieting and binging exhibited a persistent compulsive-like behavior when access to preferred pellets was paired with mild electrical foot shock punishments. These results highlight the intricate development of anxiety-like disorders and cognitive deficits leading to a loss of control over preferred food intake after repetitive cycles of intermittent access to palatable food.
Resumo:
Normal rats were injected intravenously with 131I- and 125I-labeled intact murine and chimeric mouse-human monoclonal antibodies directed against carcinoembryonic antigen or with the corresponding F(ab')2 fragments. At different times after injection, individual animals were killed and radioactivity of blood and major organs, including bones and bone marrow, was determined. Ratios comparing radioactivity concentration in different tissues with that of bone marrow were calculated and found to remain stable during several effective half-lives of the antibodies. Mean bone marrow radioactivity was 35% (range, 29%-40%) of that of blood and 126% (range, 108%-147%) of that of liver after injection of intact Mabs or F(ab')2 fragments. In nude rats bearing human colon carcinoma xenografts producing carcinoembryonic antigen, relative bone marrow radioactivity was slightly lower than that in normal rats.
Resumo:
Contribution of visual and nonvisual mechanisms to spatial behavior of rats in the Morris water maze was studied with a computerized infrared tracking system, which switched off the room lights when the subject entered the inner circular area of the pool with an escape platform. Naive rats trained under light-dark conditions (L-D) found the escape platform more slowly than rats trained in permanent light (L). After group members were swapped, the L-pretrained rats found under L-D conditions the same target faster and eventually approached latencies attained during L navigation. Performance of L-D-trained rats deteriorated in permanent darkness (D) but improved with continued D training. Thus L-D navigation improves gradually by procedural learning (extrapolation of the start-target azimuth into the zero-visibility zone) but remains impaired by lack of immediate visual feedback rather than by absence of the snapshot memory of the target view.
Resumo:
PURPOSE: To investigate the involvement of the cornea during endotoxin-induced uveitis (EIU) in the rat and the effect of Ngamma-nitro-L-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor, administered by iontophoresis. METHODS: EIU was induced in Lewis rats that were killed at 8 and 16 hours after lipopolysaccharide (LPS) injection. The severity of uveitis was evaluated clinically at 16 hours, and nitrite levels were evaluated in the aqueous humor at 8 hours. Corneal thickness was measured, 16 hours after LPS injection, on histologic sections using an image analyzer. Transmission electron microscopy (TEM) was used for fine analysis of the cornea. Transcorneoscleral iontophoresis of L-NAME (100 mM) was performed either at LPS injection or at 1 and 2 hours after LPS injection. RESULTS: At 16 hours after LPS injection, mean corneal thickness was 153.7+/-5.58 microm in the group of rats injected with LPS (n=8) compared with 126.89+/-11.11 microm in the saline-injected rats (n=8) (P < 0.01). TEM showed stromal edema and signs of damage in the endothelial and epithelial layers. In the group of rats treated by three successive iontophoreses of L-NAME (n=8), corneal thickness was 125.24+/-10.36 microm compared with 146.76+/-7.52 microm in the group of rats treated with iontophoresis of saline (n=8), (P=0.015). TEM observation showed a reduction of stromal edema and a normal endothelium. Nitrite levels in the aqueous humor were significantly reduced at 8 hours by L-NAME treatment (P=0.03). No effect on corneal edema was observed after a single iontophoresis of L-NAME at LPS injection (P=0.19). Iontophoresis of saline by itself induced no change in corneal thickness nor in TEM structure analysis compared with normal rats. CONCLUSIONS: Corneal edema is observed during EIU. This edema is significantly reduced by three successive iontophoreses of L-NAME, which partially inhibited the inflammation. A role of nitric oxide in the corneal endothelium functions may explain the antiedematous effect of L-NAME.
Resumo:
The increase of total choline in tumors has become an important biomarker in cancer diagnosis. Choline and choline metabolites can be measured in vivo and in vitro using multinuclear MRS. Recent in vivo(13)C MRS studies using labeled substrates enhanced via dynamic nuclear polarization demonstrated the tremendous potential of hyperpolarization for real-time metabolic studies. The present study demonstrates the feasibility of detecting hyperpolarized (15)N labeled choline in vivo in a rat head at 9.4 T. We furthermore report the in vitro (172 +/- 16 s) and in vivo (126 +/- 15 s) longitudinal relaxation times. We conclude that with appropriate infusion protocols it is feasible to detect hyperpolarized (15)N labeled choline in live animals.
Resumo:
BACKGROUND: Cytoskeletal changes after longterm exposure to ethanol have been described in a number of cell types in adult rat and humans. These changes can play a key part in the impairment of nutrient assimilation and postnatal growth retardation after prenatal damage of the intestinal epithelium produced by ethanol intake. AIMS: To determine, in the newborn rat, which cytoskeletal proteins are affected by longterm ethanol exposure in utero and to what extent. ANIMALS: The offspring of two experimental groups of female Wistar rats: ethanol treated group receiving up to 25% (w/v) of ethanol in the drinking fluid and control group receiving water as drinking fluid. METHODS: Single and double electron microscopy immunolocalisation and label density estimation of cytoskeletal proteins on sections of proximal small intestine incubated with monoclonal antibodies against actin, alpha-tubulin, cytokeratin (polypeptides 1, 5, 6, 7, 8, 10, 11, and 18), and with a polyclonal antibody anti-beta 1,4-galactosyl transferase as trans golgi (TG) or trans golgi network (TGN) marker, or both. SDS-PAGE technique was also performed on cytoskeletal enriched fractions from small intestine. Western blotting analysis was carried out by incubation with the same antibodies used for immunolocalisation. RESULTS: Intestinal epithelium of newborn rats from the ethanol treated group showed an overexpression of cytoskeletal polypeptides ranging from 39 to 54 kDa, affecting actin and some cytokeratins, but not tubulin. Furthermore, a cytokeratin related polypeptide of 28-29 kDa was identified together with an increase in free ubiquitin in the same group. It was noteworthy that actin and cytokeratin were abnormally located in the TG or the TGN, or both. CONCLUSIONS: Longterm exposure to ethanol in utero causes severe dysfunction in the cytoskeleton of the developing intestinal epithelium. Actin and cytokeratins, which are involved in cytoskeleton anchoring to plasma membrane and cell adhesion, are particularly affected, showing overexpression, impaired proteolysis, and mislocalisation.
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.