791 resultados para Concerns Based Adoption Model CBAM
Resumo:
The construction of a reliable, practically useful prediction rule for future response is heavily dependent on the "adequacy" of the fitted regression model. In this article, we consider the absolute prediction error, the expected value of the absolute difference between the future and predicted responses, as the model evaluation criterion. This prediction error is easier to interpret than the average squared error and is equivalent to the mis-classification error for the binary outcome. We show that the distributions of the apparent error and its cross-validation counterparts are approximately normal even under a misspecified fitted model. When the prediction rule is "unsmooth", the variance of the above normal distribution can be estimated well via a perturbation-resampling method. We also show how to approximate the distribution of the difference of the estimated prediction errors from two competing models. With two real examples, we demonstrate that the resulting interval estimates for prediction errors provide much more information about model adequacy than the point estimates alone.
Resumo:
Detailed knowledge of the characteristics of the radiation field shaped by a multileaf collimator (MLC) is essential in intensity modulated radiotherapy (IMRT). A previously developed multiple source model (MSM) for a 6 MV beam was extended to a 15 MV beam and supplemented with an accurate model of an 80-leaf dynamic MLC. Using the supplemented MSM and the MC code GEANT, lateral dose distributions were calculated in a water phantom and a portal water phantom. A field which is normally used for the validation of the step and shoot technique and a field from a realistic IMRT treatment plan delivered with dynamic MLC are investigated. To assess possible spectral changes caused by the modulation of beam intensity by an MLC, the energy spectra in five portal planes were calculated for moving slits of different widths. The extension of the MSM to 15 MV was validated by analysing energy fluences, depth doses and dose profiles. In addition, the MC-calculated primary energy spectrum was verified with an energy spectrum which was reconstructed from transmission measurements. MC-calculated dose profiles using the MSM for the step and shoot case and for the dynamic MLC case are in very good agreement with the measured data from film dosimetry. The investigation of a 13 cm wide field shows an increase in mean photon energy of up to 16% for the 0.25 cm slit compared to the open beam for 6 MV and of up to 6% for 15 MV, respectively. In conclusion, the MSM supplemented with the dynamic MLC has proven to be a powerful tool for investigational and benchmarking purposes or even for dose calculations in IMRT.
Resumo:
RATIONALE AND OBJECTIVES: A feasibility study on measuring kidney perfusion by a contrast-free magnetic resonance (MR) imaging technique is presented. MATERIALS AND METHODS: A flow-sensitive alternating inversion recovery (FAIR) prepared true fast imaging with steady-state precession (TrueFISP) arterial spin labeling sequence was used on a 3.0-T MR-scanner. The basis for quantification is a two-compartment exchange model proposed by Parkes that corrects for diverse assumptions in single-compartment standard models. RESULTS: Eleven healthy volunteers (mean age, 42.3 years; range 24-55) were examined. The calculated mean renal blood flow values for the exchange model (109 +/- 5 [medulla] and 245 +/- 11 [cortex] ml/min - 100 g) are in good agreement with the literature. Most important, the two-compartment exchange model exhibits a stabilizing effect on the evaluation of perfusion values if the finite permeability of the vessel wall and the venous outflow (fast solution) are considered: the values for the one-compartment standard model were 93 +/- 18 (medulla) and 208 +/- 37 (cortex) ml/min - 100 g. CONCLUSION: This improvement will increase the accuracy of contrast-free imaging of kidney perfusion in treatment renovascular disease.
Resumo:
Research on rehabilitation showed that appropriate and repetitive mechanical movements can help spinal cord injured individuals to restore their functional standing and walking. The objective of this paper was to achieve appropriate and repetitive joint movements and approximately normal gait through the PGO by replicating normal walking, and to minimize the energy consumption for both patients and the device. A model based experimental investigative approach is presented in this dissertation. First, a human model was created in Ideas and human walking was simulated in Adams. The main feature of this model was the foot ground contact model, which had distributed contact points along the foot and varied viscoelasticity. The model was validated by comparison of simulated results of normal walking and measured ones from the literature. It was used to simulate current PGO walking to investigate the real causes of poor function of the current PGO, even though it had joint movements close to normal walking. The direct cause was one leg moving at a time, which resulted in short step length and no clearance after toe off. It can not be solved by simply adding power on both hip joints. In order to find a better answer, a PGO mechanism model was used to investigate different walking mechanisms by locking or releasing some joints. A trade-off between energy consumption, control complexity and standing position was found. Finally a foot release PGO virtual model was created and simulated and only foot release mechanism was developed into a prototype. Both the release mechanism and the design of foot release were validated through the experiment by adding the foot release on the current PGO. This demonstrated an advancement in improving functional aspects of the current PGO even without a whole physical model of foot release PGO for comparison.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.