966 resultados para Computer sound processing
Resumo:
This note describes ParallelKnoppix, a bootable CD that allows creation of a Linux cluster in very little time. An experienced user can create a cluster ready to execute MPI programs in less than 10 minutes. The computers used may be heterogeneous machines, of the IA-32 architecture. When the cluster is shut down, all machines except one are in their original state, and the last can be returned to its original state by deleting a directory. The system thus provides a means of using non-dedicated computers to create a cluster. An example session is documented.
Resumo:
High hydrostatic pressure is being increasingly investigated in food processing. It causes microbial inactivation and therefore extends the shelf life and enhances the safety of food products. Yeasts, molds, and vegetative cells of bacteria can be inactivated by pressures in the range of 200 to 700 MPa. Microorganisms are more or less sensitive to pressure depending on several factors such as type, strain and the phase or state of the cells. In general, Gram-positive organisms are usually more resistant than Gram-negative. High pressure processing modifies the permeability of the cell membrane, the ion exchange and causes changes in morphology and biochemical reactions, protein denaturations and inhibition of genetic mechanisms. High pressure has been used successfully to extend the shelf life of high-acid foods such as refrigerated fruit juices, jellies and jams. There is now an increasing interest in the use of this technology to extend the shelf life of low-acid foods such as different types of meat products.
Resumo:
The effects of high pressure on the composition of food products have not been evaluated extensively. Since, it is necessary to take in consideration the possible effects in basis to the changes induced in the bio molecules by the application of high pressures. The main effect on protein is the denaturation, because the covalent bonds are not affected; however hydrogen bonding, hydrophobic and intermolecular interactions are modified or destroyed. 1 High pressure can modify the activity of some enzymes. If this is done the proteolysis and lipolysis could be more or less intense and the content of free amino acids and fatty acids will be different. This could be related to the bioavailability of these compounds. Low pressures (100 MPa) have been shown to activate some enzymes (monomeric enzymes). Higher pressures induce loss of the enzyme activity. However some enzymes are very stable (ex. Lipase ~ 600 - 1000 MPa). Lipoxygenase is less stable, and there is little information about the effects on antioxidant enzymes. Other important issue is the influence of high pressure on oxidation susceptibility. This could modify the composition of lipids if the degree of the oxidation would have been higher or lower than in the traditional product. Pressure produces the damage of cell membranes favouring the contact between substrates and enzymes, exposure to oxidation of membrane fatty acids and loos of the efficiency of vitamin E. These effects can also affect to protein oxidation. In this study different compounds were analysed to establish the differences between non-treated and high-pressure treated products.
Resumo:
The aim of this study was to evaluate the combination of abdominoplasty with liposuction of both flanks with regards to length of scar, complications, and patient's satisfaction. A retrospective analysis of 35 patients who underwent esthetic abdominoplasty at our institution between 2002 and 2004 was performed. Thirteen patients underwent abdominoplasty with liposuction of both flanks, 22 patients underwent conventional abdominoplasty. Liposuction of the flanks did not increase the rate of complications of the abdominoplasty procedures. We found a tendency toward shorter scars in patients who underwent abdominoplasty combined with liposuction of the flanks. Implementation of 3-dimensional laser surface scanning to objectify the postoperative outcomes, documented a comparable degree of flatness of the achieved body contouring in both procedures. 3-dimensional laser surface scanning can be a valuable tool to objectify assessment of postoperative results.
Resumo:
The aim of this retrospective study was to compare the clinical and radiographic results after TKA (PFC, DePuy), performed either by computer assisted navigation (CAS, Brainlab, Johnson&Johnson) or by conventional means. Material and methods: Between May and December 2006 we reviewed 36 conventional TKA performed between 2002 and 2003 (group A) and 37 navigated TKA performed between 2005 and 2006 (group B) by the same experienced surgeon. The mean age in group A was 74 years (range 62-90) and 73 (range 58-85) in group B with a similar age distribution. The preoperative mechanical axes in group A ranged from -13° varus to +13° valgus (mean absolute deviation 6.83°, SD 3.86), in group B from -13° to +16° (mean absolute deviation 5.35, SD 4.29). Patients with a previous tibial osteotomy or revision arthroplasty were excluded from the study. Examination was done by an experienced orthopedic resident independent of the surgeon. All patients had pre- and postoperative long standing radiographs. The IKSS and the WOMAC were utilized to determine the clinical outcome. Patient's degree of satisfaction was assessed on a visual analogous scale (VAS). Results: 32 of the 37 navigated TKAs (86,5%) showed a postoperative mechanical axis within the limits of 3 degrees of valgus or varus deviation compared to only 24 (66%) of the 36 standard TKAs. This difference was significant (p = 0.045). The mean absolute deviation from neutral axis was 3.00° (range -5° to +9°, SD: 1.75) in group A in comparison to 1.54° (range -5° to +4°, SD: 1.41) in group B with a highly significant difference (p = 0.000). Furthermore, both groups showed a significant postoperative improvement of their mean IKSS-values (group A: 89 preoperative to 169 postoperative, group B 88 to 176) without a significant difference between the two groups. Neither the WOMAC nor the patient's degree of satisfaction - as assessed by VAS - showed significant differences. Operation time was significantly higher in group B (mean 119.9 min.) than in group A (mean 99.6 min., p <0.000). Conclusion: Our study showed consistent significant improvement of postoperative frontal alignment in TKA by computer assisted navigation (CAS) compared to standard methods, even in the hands of a surgeon well experienced in standard TKA implantation. However, the follow-up time of this study was not long enough to judge differences in clinical outcome. Thus, the relevance of computer navigation for clinical outcome and survival of TKA remains to be proved in long term studies to justify the longer operation time. References 1 Stulberg SD. Clin Orth Rel Res. 2003;(416):177-84. 2 Chauhan SK. JBJS Br. 2004;86(3):372-7. 3 Bäthis H, et al. Orthopäde. 2006;35(10):1056-65.
Resumo:
BACKGROUND: This study describes the prevalence, associated anomalies, and demographic characteristics of cases of multiple congenital anomalies (MCA) in 19 population-based European registries (EUROCAT) covering 959,446 births in 2004 and 2010. METHODS: EUROCAT implemented a computer algorithm for classification of congenital anomaly cases followed by manual review of potential MCA cases by geneticists. MCA cases are defined as cases with two or more major anomalies of different organ systems, excluding sequences, chromosomal and monogenic syndromes. RESULTS: The combination of an epidemiological and clinical approach for classification of cases has improved the quality and accuracy of the MCA data. Total prevalence of MCA cases was 15.8 per 10,000 births. Fetal deaths and termination of pregnancy were significantly more frequent in MCA cases compared with isolated cases (p < 0.001) and MCA cases were more frequently prenatally diagnosed (p < 0.001). Live born infants with MCA were more often born preterm (p < 0.01) and with birth weight < 2500 grams (p < 0.01). Respiratory and ear, face, and neck anomalies were the most likely to occur with other anomalies (34% and 32%) and congenital heart defects and limb anomalies were the least likely to occur with other anomalies (13%) (p < 0.01). However, due to their high prevalence, congenital heart defects were present in half of all MCA cases. Among males with MCA, the frequency of genital anomalies was significantly greater than the frequency of genital anomalies among females with MCA (p < 0.001). CONCLUSION: Although rare, MCA cases are an important public health issue, because of their severity. The EUROCAT database of MCA cases will allow future investigation on the epidemiology of these conditions and related clinical and diagnostic problems.
Resumo:
Abstract : Auditory spatial functions are of crucial importance in everyday life. Determining the origin of sound sources in space plays a key role in a variety of tasks including orientation of attention, disentangling of complex acoustic patterns reaching our ears in noisy environments. Following brain damage, auditory spatial processing can be disrupted, resulting in severe handicaps. Complaints of patients with sound localization deficits include the inability to locate their crying child or being over-loaded by sounds in crowded public places. Yet, the brain bears a large capacity for reorganization following damage and/or learning. This phenomenon is referred as plasticity and is believed to underlie post-lesional functional recovery as well as learning-induced improvement. The aim of this thesis was to investigate the organization and plasticity of different aspects of auditory spatial functions. Overall, we report the outcomes of three studies: In the study entitled "Learning-induced plasticity in auditory spatial representations" (Spierer et al., 2007b), we focused on the neurophysiological and behavioral changes induced by auditory spatial training in healthy subjects. We found that relatively brief auditory spatial discrimination training improves performance and modifies the cortical representation of the trained sound locations, suggesting that cortical auditory representations of space are dynamic and subject to rapid reorganization. In the same study, we tested the generalization and persistence of training effects over time, as these are two determining factors in the development of neurorehabilitative intervention. In "The path to success in auditory spatial discrimination" (Spierer et al., 2007c), we investigated the neurophysiological correlates of successful spatial discrimination and contribute to the modeling of the anatomo-functional organization of auditory spatial processing in healthy subjects. We showed that discrimination accuracy depends on superior temporal plane (STP) activity in response to the first sound of a pair of stimuli. Our data support a model wherein refinement of spatial representations occurs within the STP and that interactions with parietal structures allow for transformations into coordinate frames that are required for higher-order computations including absolute localization of sound sources. In "Extinction of auditory stimuli in hemineglect: space versus ear" (Spierer et al., 2007a), we investigated auditory attentional deficits in brain-damaged patients. This work provides insight into the auditory neglect syndrome and its relation with neglect symptoms within the visual modality. Apart from contributing to a basic understanding of the cortical mechanisms underlying auditory spatial functions, the outcomes of the studies also contribute to develop neurorehabilitation strategies, which are currently being tested in clinical populations.
Resumo:
Previous studies have demonstrated that a region in the left ventral occipito-temporal (LvOT) cortex is highly selective to the visual forms of written words and objects relative to closely matched visual stimuli. Here, we investigated why LvOT activation is not higher for reading than picture naming even though written words and pictures of objects have grossly different visual forms. To compare neuronal responses for words and pictures within the same LvOT area, we used functional magnetic resonance imaging adaptation and instructed participants to name target stimuli that followed briefly presented masked primes that were either presented in the same stimulus type as the target (word-word, picture-picture) or a different stimulus type (picture-word, word-picture). We found that activation throughout posterior and anterior parts of LvOT was reduced when the prime had the same name/response as the target irrespective of whether the prime-target relationship was within or between stimulus type. As posterior LvOT is a visual form processing area, and there was no visual form similarity between different stimulus types, we suggest that our results indicate automatic top-down influences from pictures to words and words to pictures. This novel perspective motivates further investigation of the functional properties of this intriguing region.
Resumo:
With the aid of the cobalt labelling technique, frog spinal cord motor neuron dendrites of the subpial dendritic plexus have been identified in serial electron micrographs. Computer reconstructions of various lengths (2.5-9.8 micron) of dendritic segments showed the contours of these dendrites to be highly irregular, and to present many thorn-like projections 0.4-1.8 micron long. Number, size and distribution of synaptic contacts were also determined. Almost half of the synapses occurred at the origins of the thorns and these synapses had the largest contact areas. Only 8 out of 54 synapses analysed were found on thorns and these were the smallest. For the total length of reconstructed dendrites there was, on average, one synapse per 1.2 micron, while 4.4% of the total dendritic surface was covered with synaptic contacts. The functional significance of these distal dendrites and their capacity to influence the soma membrane potential is discussed.
Resumo:
Les déficits auditifs spatiaux se produisent fréquemment après une lésion hémisphérique ; un précédent case report suggérait que la capacité explicite à reconnaître des positions sonores, comme dans la localisation des sons, peut être atteinte alors que l'utilisation implicite d'indices sonores pour la reconnaissance d'objets sonores dans un environnement bruyant reste préservée. En testant systématiquement des patients avec lésion hémisphérique inaugurale, nous avons montré que (1) l'utilisation explicite et/ou implicite des indices sonores peut être perturbée ; (2) la dissociation entre l'atteinte de l'utilisation explicite des indices sonores versus une préservation de l'utilisation implicite de ces indices est assez fréquente ; et (3) différents types de déficits dans la localisation des sons peuvent être associés avec une utilisation implicite préservée de ces indices sonores. Conceptuellement, la dissociation entre l'utilisation explicite et implicite de ces indices sonores peut illustrer la dichotomie des deux voies du système auditif. Nos résultats parlent en faveur d'une évaluation systématique des fonctions auditives spatiales dans un contexte clinique, surtout quand l'adaptation à un environnement sonore est en jeu. De plus, des études systématiques sont nécessaires afin de mettre en lien les troubles de l'utilisation explicite versus implicite de ces indices sonores avec les difficultés à effectuer les activités de la vie quotidienne, afin d'élaborer des stratégies de réhabilitation appropriées et afin de s'assurer jusqu'à quel point l'utilisation explicite et implicite des indices spatiaux peut être rééduquée à la suite d'un dommage cérébral.
Resumo:
Therapeutic drug monitoring (TDM) aims to optimize treatments by individualizing dosage regimens based on the measurement of blood concentrations. Dosage individualization to maintain concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculations currently represent the gold standard TDM approach but require computation assistance. In recent decades computer programs have been developed to assist clinicians in this assignment. The aim of this survey was to assess and compare computer tools designed to support TDM clinical activities. The literature and the Internet were searched to identify software. All programs were tested on personal computers. Each program was scored against a standardized grid covering pharmacokinetic relevance, user friendliness, computing aspects, interfacing and storage. A weighting factor was applied to each criterion of the grid to account for its relative importance. To assess the robustness of the software, six representative clinical vignettes were processed through each of them. Altogether, 12 software tools were identified, tested and ranked, representing a comprehensive review of the available software. Numbers of drugs handled by the software vary widely (from two to 180), and eight programs offer users the possibility of adding new drug models based on population pharmacokinetic analyses. Bayesian computation to predict dosage adaptation from blood concentration (a posteriori adjustment) is performed by ten tools, while nine are also able to propose a priori dosage regimens, based only on individual patient covariates such as age, sex and bodyweight. Among those applying Bayesian calculation, MM-USC*PACK© uses the non-parametric approach. The top two programs emerging from this benchmark were MwPharm© and TCIWorks. Most other programs evaluated had good potential while being less sophisticated or less user friendly. Programs vary in complexity and might not fit all healthcare settings. Each software tool must therefore be regarded with respect to the individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Computer-assisted TDM is gaining growing interest and should further improve, especially in terms of information system interfacing, user friendliness, data storage capability and report generation.
Resumo:
Sound localization relies on the analysis of interaural time and intensity differences, as well as attenuation patterns by the outer ear. We investigated the relative contributions of interaural time and intensity difference cues to sound localization by testing 60 healthy subjects: 25 with focal left and 25 with focal right hemispheric brain damage. Group and single-case behavioural analyses, as well as anatomo-clinical correlations, confirmed that deficits were more frequent and much more severe after right than left hemispheric lesions and for the processing of interaural time than intensity difference cues. For spatial processing based on interaural time difference cues, different error types were evident in the individual data. Deficits in discriminating between neighbouring positions occurred in both hemispaces after focal right hemispheric brain damage, but were restricted to the contralesional hemispace after focal left hemispheric brain damage. Alloacusis (perceptual shifts across the midline) occurred only after focal right hemispheric brain damage and was associated with minor or severe deficits in position discrimination. During spatial processing based on interaural intensity cues, deficits were less severe in the right hemispheric brain damage than left hemispheric brain damage group and no alloacusis occurred. These results, matched to anatomical data, suggest the existence of a binaural sound localization system predominantly based on interaural time difference cues and primarily supported by the right hemisphere. More generally, our data suggest that two distinct mechanisms contribute to: (i) the precise computation of spatial coordinates allowing spatial comparison within the contralateral hemispace for the left hemisphere and the whole space for the right hemisphere; and (ii) the building up of global auditory spatial representations in right temporo-parietal cortices.
Resumo:
PURPOSE: To evaluate the feasibility of visualizing the stent lumen using coronary magnetic resonance angiography in vitro. MATERIAL AND METHODS: Nineteen different coronary stents were implanted in plastic tubes with an inner diameter of 3 mm. The tubes were positioned in a plastic container filled with gel and included in a closed flow circuit (constant flow 18 cm/sec). The magnetic resonance images were obtained with a dual inversion fast spin-echo sequence. For intraluminal stent imaging, subtraction images were calculated from scans with and without flow. Subsequently, intraluminal signal properties were objectively assessed and compared. RESULTS: As a function of the stent type, various degrees of in-stent signal attenuation were observed. Tantalum stents demonstrated minimal intraluminal signal attenuation. For nitinol stents, the stent lumen could be identified, but the intraluminal signal was markedly reduced. Steel stents resulted in the most pronounced intraluminal signal voids. CONCLUSIONS: With the present technique, radiofrequency penetration into the stents is strongly influenced by the stent material. Thesefindings may have important implicationsforfuture stent design and stent imaging strategies.