968 resultados para Computed tomography, image quality, dose reduction, iterative reconstruction, model observer
Resumo:
Introduction. Investigations into the shortcomings of current intracavitary brachytherapy (ICBT) technology has lead us to design an Anatomically Adaptive Applicator (A3). The goal of this work was to design and characterize the imaging and dosimetric capabilities of this device. The A3 design incorporates a single shield that can both rotate and translate within the colpostat. We hypothesized that this feature, coupled with specific A3 component construction materials and imaging techniques, would facilitate artifact-free CT and MR image acquisition. In addition, by shaping the delivered dose distribution via the A3 movable shield, dose delivered to the rectum will be less compared to equivalent treatments utilizing current state-of-the-art ICBT applicators. ^ Method and materials. A method was developed to facilitate an artifact-free CT imaging protocol that used a "step-and-shoot" technique: pausing the scanner midway through the scan and moving the A 3 shield out of the path of the beam. The A3 CT imaging capabilities were demonstrated acquiring images of a phantom that positioned the A3 and FW applicators in a clinically-applicable geometry. Artifact-free MRI imaging was achieved by utilizing MRI-compatible ovoid components and pulse-sequences that minimize susceptibility artifacts. Artifacts were qualitatively compared, in a clinical setup. For the dosimetric study, Monte-Carlo (MC) models of the A3 and FW (shielded and unshielded) applicators were validated. These models were incorporated into a MC model of one cervical cancer patient ICBT insertion, using 192Ir (mHDR v2 source). The A3 shield's rotation and translation was adjusted for each dwell position to minimize dose to the rectum. Superposition of dose to rectum for all A3 dwell sources (4 per ovoid) was applied to obtain a comparison of equivalent FW treatments. Rectal dose-volume histograms (absolute and HDR/PDR biologically effective dose (BED)) and BED to 2 cc (BED2cc ) were determined for all applicators and compared. ^ Results. Using a "step-and-shoot" CT scanning method and MR compliant materials and optimized pulse-sequences, images of the A 3 were nearly artifact-free for both modalities. The A3 reduced BED2cc by 18.5% and 7.2% for a PDR treatment and 22.4% and 8.7% for a HDR treatment compared to treatments delivered using an uFW and sFW applicator, respectively. ^ Conclusions. The novel design of the A3 facilitated nearly artifact-free image quality for both CT and MR clinical imaging protocols. The design also facilitated a reduction in BED to the rectum compared to equivalent ICBT treatments delivered using current, state-of-the-art applicators. ^
Resumo:
This project assessed the effectiveness of polymer gel dosimeters as tools for measuring the dose deposited by and LET of a proton beam. A total of three BANG® dosimeter formulations were evaluated: BANG®-3-Pro-2 BANGkits™ for dose measurement and two BANG®-3 variants, the LET-Baseline and LET-Meter dosimeters, for LET measurement. All dosimeters were read out using an OCT scanner. The basic characteristics of the BANGkits™ were assessed in a series of photon and electron irradiations. The dose-response relationship was found to be sigmoidal with a threshold for response of approximately 15 cGy. The active region of the dosimeter, the volume in which dosimeter response is not inhibited by oxygen, was found to make up roughly one fourth of the total dosimeter volume. Delivering a dose across multiple fractions was found to yield a greater response than delivering the same dose in a single irradiation. The dosimeter was found to accurately measure a dose distribution produced by overlapping photon fields, yielding gamma pass rates of 95.4% and 93.1% from two planar gamma analyses. Proton irradiations were performed for measurements of proton dose and LET. Initial irradiations performed through the side of a dosimeter led to OCT artifacts. Gamma pass rates of 85.7% and 89.9% were observed in two planar gamma analyses. In irradiations performed through the base of a dosimeter, gel response was found to increase with height in the dosimeter, even in areas of constant dose. After a correction was applied, gamma pass rates of 94.6% and 99.3% were observed in two planar gamma analyses. Absolute dose measurements were substantially higher (33%-100%) than the delivered doses for proton irradiations. Issues encountered while calibrating the LET-Meter gel restricted analysis of the LET measurement data to the SOBP of a proton beam. LET-Meter overresponse was found to increase linearly with track-average LET across the LET range that could be investigated (1.5 keV/micron – 3.5 keV/micron).
Resumo:
Radiomics is the high-throughput extraction and analysis of quantitative image features. For non-small cell lung cancer (NSCLC) patients, radiomics can be applied to standard of care computed tomography (CT) images to improve tumor diagnosis, staging, and response assessment. The first objective of this work was to show that CT image features extracted from pre-treatment NSCLC tumors could be used to predict tumor shrinkage in response to therapy. This is important since tumor shrinkage is an important cancer treatment endpoint that is correlated with probability of disease progression and overall survival. Accurate prediction of tumor shrinkage could also lead to individually customized treatment plans. To accomplish this objective, 64 stage NSCLC patients with similar treatments were all imaged using the same CT scanner and protocol. Quantitative image features were extracted and principal component regression with simulated annealing subset selection was used to predict shrinkage. Cross validation and permutation tests were used to validate the results. The optimal model gave a strong correlation between the observed and predicted shrinkages with . The second objective of this work was to identify sets of NSCLC CT image features that are reproducible, non-redundant, and informative across multiple machines. Feature sets with these qualities are needed for NSCLC radiomics models to be robust to machine variation and spurious correlation. To accomplish this objective, test-retest CT image pairs were obtained from 56 NSCLC patients imaged on three CT machines from two institutions. For each machine, quantitative image features with concordance correlation coefficient values greater than 0.90 were considered reproducible. Multi-machine reproducible feature sets were created by taking the intersection of individual machine reproducible feature sets. Redundant features were removed through hierarchical clustering. The findings showed that image feature reproducibility and redundancy depended on both the CT machine and the CT image type (average cine 4D-CT imaging vs. end-exhale cine 4D-CT imaging vs. helical inspiratory breath-hold 3D CT). For each image type, a set of cross-machine reproducible, non-redundant, and informative image features was identified. Compared to end-exhale 4D-CT and breath-hold 3D-CT, average 4D-CT derived image features showed superior multi-machine reproducibility and are the best candidates for clinical correlation.
Resumo:
The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.
Resumo:
Esta tesis analiza los elementos que afectan a la evaluación del rendimiento dentro de la técnica de radiodiagnóstico mediante tomografía por emisión de positrones (PET), centrándose en escáneres preclínicos. Se exploran las posibilidades de los protocolos estándar de evaluación sobre los siguientes aspectos: su uso como herramienta para validar programas de simulación Montecarlo, como método para la comparación de escáneres y su validez en el estudio del efecto sobre la calidad de imagen al utilizar radioisótopos alternativos. Inicialmente se estudian los métodos de evaluación orientados a la validación de simulaciones PET, para ello se presenta el programa GAMOS como entorno de simulación y se muestran los resultados de su validación basada en el estándar NEMA NU 4-2008 para escáneres preclínicos. Esta validación se ha realizado mediante la comparación de los resultados simulados frente a adquisiciones reales en el equipo ClearPET, describiendo la metodología de evaluación y selección de los parámetros NEMA. En este apartado también se mencionan las aportaciones desarrolladas en GAMOS para aplicaciones PET, como la inclusión de herramientas para la reconstrucción de imágenes. Por otro lado, la evaluación NEMA del ClearPET es utilizada para comparar su rendimiento frente a otro escáner preclínico: el sistema rPET-1. Esto supone la primera caracterización NEMA NU 4 completa de ambos equipos; al mismo tiempo que se analiza cómo afectan las importantes diferencias de diseño entre ellos, especialmente el tamaño axial del campo de visión y la configuración de los detectores. El 68Ga es uno de los radioisótopos no convencionales en imagen PET que está experimentando un mayor desarrollo, sin embargo, presenta la desventaja del amplio rango o distancia recorrida por el positrón emitido. Además del rango del positrón, otra propiedad física característica de los radioisótopos PET que puede afectar a la imagen es la emisión de fotones gamma adicionales, tal como le ocurre al isótopo 48V. En esta tesis se evalúan dichos efectos mediante estudios de resolución espacial y calidad de imagen NEMA. Finalmente, se analiza el alcance del protocolo NEMA NU 4-2008 cuando se utiliza para este propósito, adaptándolo a tal fin y proponiendo posibles modificaciones. Abstract This thesis analyzes the factors affecting the performance evaluation in positron emission tomography (PET) imaging, focusing on preclinical scanners. It explores the possibilities of standard protocols of assessment on the following aspects: their use as tools to validate Monte Carlo simulation programs, their usefulness as a method for comparing scanners and their validity in the study of the effect of alternative radioisotopes on image quality. Initially we study the methods of performance evaluation oriented to validate PET simulations. For this we present the GAMOS program as a simulation framework and show the results of its validation based on the standard NEMA NU 4-2008 for preclinical PET scanners. This has been accomplished by comparing simulated results against experimental acquisitions in the ClearPET scanner, describing the methodology for the evaluation and selection of NEMA parameters. This section also mentions the contributions developed in GAMOS for PET applications, such as the inclusion of tools for image reconstruction. Furthermore, the evaluation of the ClearPET scanner is used to compare its performance against another preclinical scanner, specifically the rPET-1 system. This is the first complete NEMA NU 4 based characterization study of both systems. At the same time we analyze how do the significant design differences of these two systems, especially the size of the axial field of view and the detectors configuration affect their performance characteristics. 68Ga is one of the unconventional radioisotopes in PET imaging the use of which is currently significantly increasing; however, it presents the disadvantage of the long positron range (distance traveled by the emitted positron before annihilating with an electron). Besides the positron range, additional gamma photon emission is another physical property characteristic of PET radioisotopes that can affect the reconstructed image quality, as it happens to the isotope 48V. In this thesis we assess these effects through studies of spatial resolution and image quality. Finally, we analyze the scope of the NEMA NU 4-2008 to carry out such studies, adapting it and proposing possible modifications.
Resumo:
Purpose: Accurate delineation of the rectum is of high importance in off-line adaptive radiation therapy since it is a major dose-limiting organ in prostate cancer radiotherapy. The intensity-based deformable image registration (DIR) methods cannot create a correct spatial transformation if there is no correspondence between the template and the target images. The variation of rectal filling, gas, or feces, creates a noncorrespondence in image intensities that becomes a great obstacle for intensity-based DIR. Methods: In this study the authors have designed and implemented a semiautomatic method to create a rectum mask in pelvic computed tomography (CT) images. The method, that includes a DIR based on the demons algorithm, has been tested in 13 prostate cancer cases, each comprising of two CT scans, for a total of 26 CT scans. Results: The use of the manual segmentation in the planning image and the proposed rectum mask method (RMM) method in the daily image leads to an improvement in the DIR performance in pelvic CT images, obtaining a mean value of overlap volume index = 0.89, close to the values obtained using the manual segmentations in both images. Conclusions: The application of the RMM method in the daily image and the manual segmentations in the planning image during prostate cancer treatments increases the performance of the registration in presence of rectal fillings, obtaining very good agreement with a physician's manual contours.
Resumo:
Purpose: Accurate delineation of the rectum is of high importance in off-line adaptive radiation therapy since it is a major dose-limiting organ in prostate cancer radiotherapy. The intensity-based deformable image registration (DIR) methods cannot create a correct spatial transformation if there is no correspondence between the template and the target images. The variation of rectal filling, gas, or feces, creates a noncorrespondence in image intensities that becomes a great obstacle for intensity-based DIR. Methods: In this study the authors have designed and implemented a semiautomatic method to create a rectum mask in pelvic computed tomography (CT) images. The method, that includes a DIR based on the demons algorithm, has been tested in 13 prostate cancer cases, each comprising of two CT scans, for a total of 26 CT scans. Results: The use of the manual segmentation in the planning image and the proposed rectum mask method (RMM) method in the daily image leads to an improvement in the DIR performance in pelvic CT images, obtaining a mean value of overlap volume index = 0.89, close to the values obtained using the manual segmentations in both images. Conclusions: The application of the RMM method in the daily image and the manual segmentations in the planning image during prostate cancer treatments increases the performance of the registration in presence of rectal fillings, obtaining very good agreement with a physician's manual contours.
Resumo:
Purpose: A fully three-dimensional (3D) massively parallelizable list-mode ordered-subsets expectation-maximization (LM-OSEM) reconstruction algorithm has been developed for high-resolution PET cameras. System response probabilities are calculated online from a set of parameters derived from Monte Carlo simulations. The shape of a system response for a given line of response (LOR) has been shown to be asymmetrical around the LOR. This work has been focused on the development of efficient region-search techniques to sample the system response probabilities, which are suitable for asymmetric kernel models, including elliptical Gaussian models that allow for high accuracy and high parallelization efficiency. The novel region-search scheme using variable kernel models is applied in the proposed PET reconstruction algorithm. Methods: A novel region-search technique has been used to sample the probability density function in correspondence with a small dynamic subset of the field of view that constitutes the region of response (ROR). The ROR is identified around the LOR by searching for any voxel within a dynamically calculated contour. The contour condition is currently defined as a fixed threshold over the posterior probability, and arbitrary kernel models can be applied using a numerical approach. The processing of the LORs is distributed in batches among the available computing devices, then, individual LORs are processed within different processing units. In this way, both multicore and multiple many-core processing units can be efficiently exploited. Tests have been conducted with probability models that take into account the noncolinearity, positron range, and crystal penetration effects, that produced tubes of response with varying elliptical sections whose axes were a function of the crystal's thickness and angle of incidence of the given LOR. The algorithm treats the probability model as a 3D scalar field defined within a reference system aligned with the ideal LOR. Results: This new technique provides superior image quality in terms of signal-to-noise ratio as compared with the histogram-mode method based on precomputed system matrices available for a commercial small animal scanner. Reconstruction times can be kept low with the use of multicore, many-core architectures, including multiple graphic processing units. Conclusions: A highly parallelizable LM reconstruction method has been proposed based on Monte Carlo simulations and new parallelization techniques aimed at improving the reconstruction speed and the image signal-to-noise of a given OSEM algorithm. The method has been validated using simulated and real phantoms. A special advantage of the new method is the possibility of defining dynamically the cut-off threshold over the calculated probabilities thus allowing for a direct control on the trade-off between speed and quality during the reconstruction.
Resumo:
La tomografía axial computerizada (TAC) es la modalidad de imagen médica preferente para el estudio de enfermedades pulmonares y el análisis de su vasculatura. La segmentación general de vasos en pulmón ha sido abordada en profundidad a lo largo de los últimos años por la comunidad científica que trabaja en el campo de procesamiento de imagen; sin embargo, la diferenciación entre irrigaciones arterial y venosa es aún un problema abierto. De hecho, la separación automática de arterias y venas está considerado como uno de los grandes retos futuros del procesamiento de imágenes biomédicas. La segmentación arteria-vena (AV) permitiría el estudio de ambas irrigaciones por separado, lo cual tendría importantes consecuencias en diferentes escenarios médicos y múltiples enfermedades pulmonares o estados patológicos. Características como la densidad, geometría, topología y tamaño de los vasos sanguíneos podrían ser analizados en enfermedades que conllevan remodelación de la vasculatura pulmonar, haciendo incluso posible el descubrimiento de nuevos biomarcadores específicos que aún hoy en dípermanecen ocultos. Esta diferenciación entre arterias y venas también podría ayudar a la mejora y el desarrollo de métodos de procesamiento de las distintas estructuras pulmonares. Sin embargo, el estudio del efecto de las enfermedades en los árboles arterial y venoso ha sido inviable hasta ahora a pesar de su indudable utilidad. La extrema complejidad de los árboles vasculares del pulmón hace inabordable una separación manual de ambas estructuras en un tiempo realista, fomentando aún más la necesidad de diseñar herramientas automáticas o semiautomáticas para tal objetivo. Pero la ausencia de casos correctamente segmentados y etiquetados conlleva múltiples limitaciones en el desarrollo de sistemas de separación AV, en los cuales son necesarias imágenes de referencia tanto para entrenar como para validar los algoritmos. Por ello, el diseño de imágenes sintéticas de TAC pulmonar podría superar estas dificultades ofreciendo la posibilidad de acceso a una base de datos de casos pseudoreales bajo un entorno restringido y controlado donde cada parte de la imagen (incluyendo arterias y venas) está unívocamente diferenciada. En esta Tesis Doctoral abordamos ambos problemas, los cuales están fuertemente interrelacionados. Primero se describe el diseño de una estrategia para generar, automáticamente, fantomas computacionales de TAC de pulmón en humanos. Partiendo de conocimientos a priori, tanto biológicos como de características de imagen de CT, acerca de la topología y relación entre las distintas estructuras pulmonares, el sistema desarrollado es capaz de generar vías aéreas, arterias y venas pulmonares sintéticas usando métodos de crecimiento iterativo, que posteriormente se unen para formar un pulmón simulado con características realistas. Estos casos sintéticos, junto a imágenes reales de TAC sin contraste, han sido usados en el desarrollo de un método completamente automático de segmentación/separación AV. La estrategia comprende una primera extracción genérica de vasos pulmonares usando partículas espacio-escala, y una posterior clasificación AV de tales partículas mediante el uso de Graph-Cuts (GC) basados en la similitud con arteria o vena (obtenida con algoritmos de aprendizaje automático) y la inclusión de información de conectividad entre partículas. La validación de los fantomas pulmonares se ha llevado a cabo mediante inspección visual y medidas cuantitativas relacionadas con las distribuciones de intensidad, dispersión de estructuras y relación entre arterias y vías aéreas, los cuales muestran una buena correspondencia entre los pulmones reales y los generados sintéticamente. La evaluación del algoritmo de segmentación AV está basada en distintas estrategias de comprobación de la exactitud en la clasificación de vasos, las cuales revelan una adecuada diferenciación entre arterias y venas tanto en los casos reales como en los sintéticos, abriendo así un amplio abanico de posibilidades en el estudio clínico de enfermedades cardiopulmonares y en el desarrollo de metodologías y nuevos algoritmos para el análisis de imágenes pulmonares. ABSTRACT Computed tomography (CT) is the reference image modality for the study of lung diseases and pulmonary vasculature. Lung vessel segmentation has been widely explored by the biomedical image processing community, however, differentiation of arterial from venous irrigations is still an open problem. Indeed, automatic separation of arterial and venous trees has been considered during last years as one of the main future challenges in the field. Artery-Vein (AV) segmentation would be useful in different medical scenarios and multiple pulmonary diseases or pathological states, allowing the study of arterial and venous irrigations separately. Features such as density, geometry, topology and size of vessels could be analyzed in diseases that imply vasculature remodeling, making even possible the discovery of new specific biomarkers that remain hidden nowadays. Differentiation between arteries and veins could also enhance or improve methods processing pulmonary structures. Nevertheless, AV segmentation has been unfeasible until now in clinical routine despite its objective usefulness. The huge complexity of pulmonary vascular trees makes a manual segmentation of both structures unfeasible in realistic time, encouraging the design of automatic or semiautomatic tools to perform the task. However, this lack of proper labeled cases seriously limits in the development of AV segmentation systems, where reference standards are necessary in both algorithm training and validation stages. For that reason, the design of synthetic CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image (including arteries and veins) is differentiated unequivocally. In this Ph.D. Thesis we address both interrelated problems. First, the design of a complete framework to automatically generate computational CT phantoms of the human lung is described. Starting from biological and imagebased knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. These synthetic cases, together with labeled real CT datasets, have been used as reference for the development of a fully automatic pulmonary AV segmentation/separation method. The approach comprises a vessel extraction stage using scale-space particles and their posterior artery-vein classification using Graph-Cuts (GC) based on arterial/venous similarity scores obtained with a Machine Learning (ML) pre-classification step and particle connectivity information. Validation of pulmonary phantoms from visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems, show good correspondence between real and synthetic lungs. The evaluation of the Artery-Vein (AV) segmentation algorithm, based on different strategies to assess the accuracy of vessel particles classification, reveal accurate differentiation between arteries and vein in both real and synthetic cases that open a huge range of possibilities in the clinical study of cardiopulmonary diseases and the development of methodological approaches for the analysis of pulmonary images.
Resumo:
A presença da Medicina Nuclear como modalidade de obtenção de imagens médicas é um dos principais procedimentos utilizados hoje nos centros de saúde, tendo como grande vantagem a capacidade de analisar o comportamento metabólico do paciente, traduzindo-se em diagnósticos precoces. Entretanto, sabe-se que a quantificação em Medicina Nuclear é dificultada por diversos fatores, entre os quais estão a correção de atenuação, espalhamento, algoritmos de reconstrução e modelos assumidos. Neste contexto, o principal objetivo deste projeto foi melhorar a acurácia e a precisão na análise de imagens de PET/CT via processos realísticos e bem controlados. Para esse fim, foi proposta a elaboração de uma estrutura modular, a qual está composta por um conjunto de passos consecutivamente interligados começando com a simulação de phantoms antropomórficos 3D para posteriormente gerar as projeções realísticas PET/CT usando a plataforma GATE (com simulação de Monte Carlo), em seguida é aplicada uma etapa de reconstrução de imagens 3D, na sequência as imagens são filtradas (por meio do filtro de Anscombe/Wiener para a redução de ruído Poisson caraterístico deste tipo de imagens) e, segmentadas (baseados na teoria Fuzzy Connectedness). Uma vez definida a região de interesse (ROI) foram produzidas as Curvas de Atividade de Entrada e Resultante requeridas no processo de análise da dinâmica de compartimentos com o qual foi obtida a quantificação do metabolismo do órgão ou estrutura de estudo. Finalmente, de uma maneira semelhante imagens PET/CT reais fornecidas pelo Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP) foram analisadas. Portanto, concluiu-se que a etapa de filtragem tridimensional usando o filtro Anscombe/Wiener foi relevante e de alto impacto no processo de quantificação metabólica e em outras etapas importantes do projeto em geral.
Resumo:
Apesar da utilização da ventilação mecânica protetora como estratégia para o tratamento da síndrome do desconforto respiratório agudo, ao menos um quarto dos pacientes com essa síndrome ainda apresentam redução na função pulmonar após 6 meses de seguimento. Não se sabe se esta redução está relacionada com a gravidade da síndrome ou associada com a forma de ventilar o paciente. Nosso objetivo neste trabalho foi avaliar a associação entre alterações funcionais e estruturais do pulmão com parâmetros de gravidade clínica e de ventilação mecânica. Foi realizada uma análise secundária dos dados obtidos em estudo randomizado e controlado que incluiu pacientes com síndrome do desconforto respiratório agudo moderada/grave, internados em seis unidades de terapia intensiva em um hospital terciário da cidade de São Paulo. Foram analisados dados de pacientes que tinham ao menos um teste de função pulmonar no seguimento. O teste funcional incluiu a medida da capacidade vital forçada, volumes pulmonares e a capacidade de difusão do monóxido de carbono após 1, 2 e 6 meses de seguimento. Foram considerados variáveis independentes o volume corrente, a pressão de distensão e a pressão positiva ao final da expiração (todos medidos após 24 horas da randomização) e um sistema de classificação de prognóstico (APACHE II), a relação PaO2/FIO2 e a complacência respiratória estática (todos medidos antes da randomização). Também foi realizada tomografia de alta resolução do tórax juntamente com os testes de função pulmonar, e posterior análise quantitativa das imagens. Na avaliação de 6 meses também foi realizado teste de caminhada de 6 minutos e um questionário de qualidade de vida (SF-36). Um total de 21 pacientes realizaram o teste de função pulmonar após 1 mês e 15 pacientes realizaram após 2 e 6 meses de seguimento. A capacidade vital forçada foi relacionada inversamente com a pressão de distensão na avaliação de 1, 2 e 6 meses (p < 0,01). A capacidade de difusão do monóxido de carbono relacionou-se inversamente com a pressão de distensão e com o APACHE II (ambos p < 0,01) na avaliação de 1 e 2 meses. Após 6 meses de seguimento, houve correlação inversa entre a pressão de distensão e a capacidade vital forçada independente do volume corrente, da pressão de platô e da complacência estática respiratória após ajustes (R2 = 0,51, p = 0,02). A pressão de distensão também se relacionou com o volume pulmonar total, a densidade pulmonar media e a porcentagem de volume pulmonar não aerado ou pobremente aerado medidos através da análise quantitativa da tomografia computadorizada de tórax realizada na avaliação de 6 meses. Também foi observada relação entre a qualidade de vida após 6 meses de seguimento e a pressão de distensão considerando o domínio estado geral de saúde. Nós concluímos que mesmo em pacientes ventilados com reduzido volume corrente e pressão de platô limitada, maiores valores de pressão de distensão relacionaram-se com menores valores de função pulmonar no seguimento de longo prazo
Resumo:
O estudo do movimento pulmonar é assunto de grande interesse na área médica. A observação direta do mesmo é inviável, uma vez que o pulmão colapsa quando a caixa torácica é aberta. Dentre os meios de observação indireta, escolheu-se o imageamento por ressonância magnética em respiração livre e sem uso de nenhum gás para melhorar o contraste ou qualquer informação de sincronismo. Esta escolha propõe diversos desafios, como: a superar a alta variação na qualidade das imagens, que é baixa, em geral, e a suscetibilidade a artefatos, entre outras limitações a serem superadas. Imagens de Tomografia Computadorizada apresentam melhor qualidade e menor tempo de aquisição, mas expõem o paciente a níveis consideráveis de radiação ionizante. É apresentada uma metodologia para segmentação do pulmão, produzindo um conjunto de pontos coordenados. Isto é feito através do processamento temporal da sequência de imagens de RM. Este processamento consiste nas seguintes etapas: geração de imagens temporais (2DSTI), transformada de Hough modificada, algoritmo de contornos ativos e geração de silhueta. A partir de um dado ponto, denominado centro de rotação, são geradas diversas imagens temporais com orientações variadas. É proposta uma formulação modificada da transformada de Hough para determinar curvas parametrizadas que sejam síncronas ao movimento diafragmático, chamados movimentos respiratórios. Também são utilizadas máscaras para delimitar o domínio de aplicação da transformada de Hough. São obtidos movimentos respiratórios que são suavizados pelo algoritmo de contornos ativos e, assim, permitem a geração de contornos para cada quadro pertencente a sequência e, portanto, de uma silhueta do pulmão para cada sequência.
Resumo:
Lung cancer is one of the most common types of cancer and has the highest mortality rate. Patient survival is highly correlated with early detection. Computed Tomography technology services the early detection of lung cancer tremendously by offering aminimally invasive medical diagnostic tool. However, the large amount of data per examination makes the interpretation difficult. This leads to omission of nodules by human radiologist. This thesis presents a development of a computer-aided diagnosis system (CADe) tool for the detection of lung nodules in Computed Tomography study. The system, called LCD-OpenPACS (Lung Cancer Detection - OpenPACS) should be integrated into the OpenPACS system and have all the requirements for use in the workflow of health facilities belonging to the SUS (Brazilian health system). The LCD-OpenPACS made use of image processing techniques (Region Growing and Watershed), feature extraction (Histogram of Gradient Oriented), dimensionality reduction (Principal Component Analysis) and classifier (Support Vector Machine). System was tested on 220 cases, totaling 296 pulmonary nodules, with sensitivity of 94.4% and 7.04 false positives per case. The total time for processing was approximately 10 minutes per case. The system has detected pulmonary nodules (solitary, juxtavascular, ground-glass opacity and juxtapleural) between 3 mm and 30 mm.
Resumo:
Abstract
The goal of modern radiotherapy is to precisely deliver a prescribed radiation dose to delineated target volumes that contain a significant amount of tumor cells while sparing the surrounding healthy tissues/organs. Precise delineation of treatment and avoidance volumes is the key for the precision radiation therapy. In recent years, considerable clinical and research efforts have been devoted to integrate MRI into radiotherapy workflow motivated by the superior soft tissue contrast and functional imaging possibility. Dynamic contrast-enhanced MRI (DCE-MRI) is a noninvasive technique that measures properties of tissue microvasculature. Its sensitivity to radiation-induced vascular pharmacokinetic (PK) changes has been preliminary demonstrated. In spite of its great potential, two major challenges have limited DCE-MRI’s clinical application in radiotherapy assessment: the technical limitations of accurate DCE-MRI imaging implementation and the need of novel DCE-MRI data analysis methods for richer functional heterogeneity information.
This study aims at improving current DCE-MRI techniques and developing new DCE-MRI analysis methods for particular radiotherapy assessment. Thus, the study is naturally divided into two parts. The first part focuses on DCE-MRI temporal resolution as one of the key DCE-MRI technical factors, and some improvements regarding DCE-MRI temporal resolution are proposed; the second part explores the potential value of image heterogeneity analysis and multiple PK model combination for therapeutic response assessment, and several novel DCE-MRI data analysis methods are developed.
I. Improvement of DCE-MRI temporal resolution. First, the feasibility of improving DCE-MRI temporal resolution via image undersampling was studied. Specifically, a novel MR image iterative reconstruction algorithm was studied for DCE-MRI reconstruction. This algorithm was built on the recently developed compress sensing (CS) theory. By utilizing a limited k-space acquisition with shorter imaging time, images can be reconstructed in an iterative fashion under the regularization of a newly proposed total generalized variation (TGV) penalty term. In the retrospective study of brain radiosurgery patient DCE-MRI scans under IRB-approval, the clinically obtained image data was selected as reference data, and the simulated accelerated k-space acquisition was generated via undersampling the reference image full k-space with designed sampling grids. Two undersampling strategies were proposed: 1) a radial multi-ray grid with a special angular distribution was adopted to sample each slice of the full k-space; 2) a Cartesian random sampling grid series with spatiotemporal constraints from adjacent frames was adopted to sample the dynamic k-space series at a slice location. Two sets of PK parameters’ maps were generated from the undersampled data and from the fully-sampled data, respectively. Multiple quantitative measurements and statistical studies were performed to evaluate the accuracy of PK maps generated from the undersampled data in reference to the PK maps generated from the fully-sampled data. Results showed that at a simulated acceleration factor of four, PK maps could be faithfully calculated from the DCE images that were reconstructed using undersampled data, and no statistically significant differences were found between the regional PK mean values from undersampled and fully-sampled data sets. DCE-MRI acceleration using the investigated image reconstruction method has been suggested as feasible and promising.
Second, for high temporal resolution DCE-MRI, a new PK model fitting method was developed to solve PK parameters for better calculation accuracy and efficiency. This method is based on a derivative-based deformation of the commonly used Tofts PK model, which is presented as an integrative expression. This method also includes an advanced Kolmogorov-Zurbenko (KZ) filter to remove the potential noise effect in data and solve the PK parameter as a linear problem in matrix format. In the computer simulation study, PK parameters representing typical intracranial values were selected as references to simulated DCE-MRI data for different temporal resolution and different data noise level. Results showed that at both high temporal resolutions (<1s) and clinically feasible temporal resolution (~5s), this new method was able to calculate PK parameters more accurate than the current calculation methods at clinically relevant noise levels; at high temporal resolutions, the calculation efficiency of this new method was superior to current methods in an order of 102. In a retrospective of clinical brain DCE-MRI scans, the PK maps derived from the proposed method were comparable with the results from current methods. Based on these results, it can be concluded that this new method can be used for accurate and efficient PK model fitting for high temporal resolution DCE-MRI.
II. Development of DCE-MRI analysis methods for therapeutic response assessment. This part aims at methodology developments in two approaches. The first one is to develop model-free analysis method for DCE-MRI functional heterogeneity evaluation. This approach is inspired by the rationale that radiotherapy-induced functional change could be heterogeneous across the treatment area. The first effort was spent on a translational investigation of classic fractal dimension theory for DCE-MRI therapeutic response assessment. In a small-animal anti-angiogenesis drug therapy experiment, the randomly assigned treatment/control groups received multiple fraction treatments with one pre-treatment and multiple post-treatment high spatiotemporal DCE-MRI scans. In the post-treatment scan two weeks after the start, the investigated Rényi dimensions of the classic PK rate constant map demonstrated significant differences between the treatment and the control groups; when Rényi dimensions were adopted for treatment/control group classification, the achieved accuracy was higher than the accuracy from using conventional PK parameter statistics. Following this pilot work, two novel texture analysis methods were proposed. First, a new technique called Gray Level Local Power Matrix (GLLPM) was developed. It intends to solve the lack of temporal information and poor calculation efficiency of the commonly used Gray Level Co-Occurrence Matrix (GLCOM) techniques. In the same small animal experiment, the dynamic curves of Haralick texture features derived from the GLLPM had an overall better performance than the corresponding curves derived from current GLCOM techniques in treatment/control separation and classification. The second developed method is dynamic Fractal Signature Dissimilarity (FSD) analysis. Inspired by the classic fractal dimension theory, this method measures the dynamics of tumor heterogeneity during the contrast agent uptake in a quantitative fashion on DCE images. In the small animal experiment mentioned before, the selected parameters from dynamic FSD analysis showed significant differences between treatment/control groups as early as after 1 treatment fraction; in contrast, metrics from conventional PK analysis showed significant differences only after 3 treatment fractions. When using dynamic FSD parameters, the treatment/control group classification after 1st treatment fraction was improved than using conventional PK statistics. These results suggest the promising application of this novel method for capturing early therapeutic response.
The second approach of developing novel DCE-MRI methods is to combine PK information from multiple PK models. Currently, the classic Tofts model or its alternative version has been widely adopted for DCE-MRI analysis as a gold-standard approach for therapeutic response assessment. Previously, a shutter-speed (SS) model was proposed to incorporate transcytolemmal water exchange effect into contrast agent concentration quantification. In spite of richer biological assumption, its application in therapeutic response assessment is limited. It might be intriguing to combine the information from the SS model and from the classic Tofts model to explore potential new biological information for treatment assessment. The feasibility of this idea was investigated in the same small animal experiment. The SS model was compared against the Tofts model for therapeutic response assessment using PK parameter regional mean value comparison. Based on the modeled transcytolemmal water exchange rate, a biological subvolume was proposed and was automatically identified using histogram analysis. Within the biological subvolume, the PK rate constant derived from the SS model were proved to be superior to the one from Tofts model in treatment/control separation and classification. Furthermore, novel biomarkers were designed to integrate PK rate constants from these two models. When being evaluated in the biological subvolume, this biomarker was able to reflect significant treatment/control difference in both post-treatment evaluation. These results confirm the potential value of SS model as well as its combination with Tofts model for therapeutic response assessment.
In summary, this study addressed two problems of DCE-MRI application in radiotherapy assessment. In the first part, a method of accelerating DCE-MRI acquisition for better temporal resolution was investigated, and a novel PK model fitting algorithm was proposed for high temporal resolution DCE-MRI. In the second part, two model-free texture analysis methods and a multiple-model analysis method were developed for DCE-MRI therapeutic response assessment. The presented works could benefit the future DCE-MRI routine clinical application in radiotherapy assessment.
Resumo:
A tenet of modern radiotherapy (RT) is to identify the treatment target accurately, following which the high-dose treatment volume may be expanded into the surrounding tissues in order to create the clinical and planning target volumes. Respiratory motion can induce errors in target volume delineation and dose delivery in radiation therapy for thoracic and abdominal cancers. Historically, radiotherapy treatment planning in the thoracic and abdominal regions has used 2D or 3D images acquired under uncoached free-breathing conditions, irrespective of whether the target tumor is moving or not. Once the gross target volume has been delineated, standard margins are commonly added in order to account for motion. However, the generic margins do not usually take the target motion trajectory into consideration. That may lead to under- or over-estimate motion with subsequent risk of missing the target during treatment or irradiating excessive normal tissue. That introduces systematic errors into treatment planning and delivery. In clinical practice, four-dimensional (4D) imaging has been popular in For RT motion management. It provides temporal information about tumor and organ at risk motion, and it permits patient-specific treatment planning. The most common contemporary imaging technique for identifying tumor motion is 4D computed tomography (4D-CT). However, CT has poor soft tissue contrast and it induce ionizing radiation hazard. In the last decade, 4D magnetic resonance imaging (4D-MRI) has become an emerging tool to image respiratory motion, especially in the abdomen, because of the superior soft-tissue contrast. Recently, several 4D-MRI techniques have been proposed, including prospective and retrospective approaches. Nevertheless, 4D-MRI techniques are faced with several challenges: 1) suboptimal and inconsistent tumor contrast with large inter-patient variation; 2) relatively low temporal-spatial resolution; 3) it lacks a reliable respiratory surrogate. In this research work, novel 4D-MRI techniques applying MRI weightings that was not used in existing 4D-MRI techniques, including T2/T1-weighted, T2-weighted and Diffusion-weighted MRI were investigated. A result-driven phase retrospective sorting method was proposed, and it was applied to image space as well as k-space of MR imaging. Novel image-based respiratory surrogates were developed, improved and evaluated.