914 resultados para Composite polymer blend. Polyethylene terephthalate. Polyethylenemethyl acrylate. And cotton linter
Resumo:
Potential applications of high-damping and high-stiffness composites have motivated extensive research on the effects of negative-stiffness inclusions on the overall properties of composites. Recent theoretical advances have been based on the Hashin-Shtrikman composite models, one-dimensional discrete viscoelastic systems and a two-dimensional nested triangular viscoelastic network. In this paper, we further analyze the two-dimensional triangular structure containing pre-selected negative-stiffness components to study its underlying deformation mechanisms and stability. Major new findings are structure-deformation evolution with respect to the magnitude of negative stiffness under shear loading and the phenomena related to dissipation-induced destabilization and inertia-induced stabilization, according to Lyapunov stability analysis. The evolution shows strong correlations between stiffness anomalies and deformation modes. Our stability results reveal that stable damping peaks, i.e. stably extreme effective damping properties, are achievable under hydrostatic loading when the inertia is greater than a critical value. Moreover, destabilization induced by elemental damping is observed with the critical inertia. Regardless of elemental damping, when the inertia is less than the critical value, a weaker system instability is identified.
Resumo:
Spray-drying is an effective process for preparing micron-dimensioned particles for pulmonary delivery. Previously, we have demonstrated enhanced dispersibility and fine particle fraction of spray-dried nonviral gene delivery formulations using amino acids or absorption enhancers as dispersibility-enhancing excipients. In this study, we investigate the use of the cationic polymer chitosan as a readily available and biocompatible dispersibility enhancer. Lactose-lipid:polycation:pDNA (LPD) powders were prepared by spray-drying and post-mixed with chitosan or spray-dried chitosan. In addition, the water-soluble chitosan derivative, trimethyl chitosan, was added to the lactose-LPD formulation before spray-drying. Spray-dried chitosan particles, displaying an irregular surface morphology and diameter of less than 2 mu m, readily adsorbed to lactose-LPD particles following mixing. In contrast with the smooth spherical surface of lactose-LPD particles, spray-dried trimethyl chitosan-lactose-LPD particles demonstrated increased surface roughness and a unimodal particle size distribution (mean diameter 3.4 mu m), compared with the multimodal distribution for unmodified lactose-LPD powders (mean diameter 23.7 mu m). The emitted dose and in vitro deposition of chitosan-modified powders was significantly greater than that of unmodified powders. Moreover, the inclusion of chitosan mediated an enhanced level of reporter gene expression. In summary, chitosan enhances the dispersibility and in vitro pulmonary deposition performance of spray-dried powders.
Resumo:
Ultrathin alumina monolayers grafted onto an ordered mesoporous SBA-15 silica framework afford a composite catalyst support with unique structural properties and surface chemistry. Palladium nanoparticles deposited onto Al-SBA-15 via wet impregnation exhibit the high dispersion and surface oxidation characteristic of pure aluminas, in conjunction with the high active site densities characteristic of thermally stable, high-area mesoporous silicas. This combination confers significant rate enhancements in the aerobic selective oxidation (selox) of cinnamyl alcohol over Pd/Al-SBA-15 compared to mesoporous alumina or silica supports. Operando, liquid-phase XAS highlights the interplay between dissolved oxygen and the oxidation state of palladium nanoparticles dispersed over Al-SBA-15 towards on-stream reduction: ambient pressures of flowing oxygen are sufficient to hinder palladium oxide reduction to metal, enabling a high selox activity to be maintained, whereas rapid PdO reduction and concomitant catalyst deactivation occurs under static oxygen. Selectivity to the desired cinnamaldehyde product mirrors these trends in activity, with flowing oxygen minimising CO cleavage of the cinnamyl alcohol reactant to trans-β-methylstyrene, and of cinnamaldehyde decarbonylation to styrene. © 2013 Elsevier B.V.
Resumo:
We propose and experimentally realize a composite Raman converter based on P-doped and Gedoped fibers. The converter has an emission wavelength of 1.649 μm and an output power of 1.2 W. Numerical simulation of the configuration suggested was performed. A similar converter scheme can be used to build sources with any emission wavelength in the range from 1.6 to 1.75 μm.
Resumo:
Here we report on a potential catalytic process for efficient clean-up of plastic pollution in waters, such as the Great Pacific Garbage Patch (CPGP). Detailed catalytic mechanisms of RuO2 during supercritical water gasification of common polyolefin plastics including low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and polystyrene (PP), have been investigated in a batch reactor at 450 °C, 60 min. All four plastics gave very high carbon gasification efficiencies (CGE) and hydrogen gasification efficiencies (HGE). Methane was the highest gas component, with a yield of up to 37 mol kg−1LDPE using the 20 wt% RuO2 catalyst. Evaluation of the gas yields, CGE and HGE revealed that the conversion of PS involved thermal degradation, steam reforming and methanation; whereas hydrogenolysis was a possible additional mechanism during the conversion of aliphatic plastics. The process has the benefits of producing a clean-pressurized methane-rich fuel gas as well as cleaning up hydrocarbons-polluted waters.
Resumo:
Design methods and tools are generally best learned and developed experientially [1]. Finding appropriate vehicles for delivering these to students is becoming increasingly challenging, especially when considering only those that will enthuse, intrigue and inspire. This paper traces the development of different eco-car design and build projects which competed in the Shell Eco-Marathon. The cars provided opportunities for experiential learning through a formal learning cycle of CDIO (Conceive, Design, Implement, Operate) or the more traditional understand, explore, create, validate, with both teams developing a functional finished prototype. Lessons learned were applied through the design of a third and fourth eco-car using experimental techniques with bio-composites, combining the knowledge of fibre reinforced composite materials and adhesives with the plywood construction techniques of the two teams. The paper discusses the importance of applying materials and techniques to a real world problem. It will also explore how eco-car and comparing traditional materials and construction techniques with high tech composite materials is an ideal teaching, learning and assessment vehicle for technical design techniques.
Resumo:
Fibre Bragg gratings at 1568nm have been inscribed in single mode TOPAS microstructured polymer optical fibre to characterise thermal and humidity sensitivity of the fibres in the 1550nm spectral region. Results demonstrate a temperature sensitivity of approximately -36 pm/°C and a humidity sensitivity of no more than - 0.59 pm/%RH. The fibre material appears to be very attractive for long term monitoring of high strains because of its insensitivity to humidity.
Resumo:
The preparation of nanostructured materials using natural clays as support, has been studied in literature under the same are found in nature and consequently, have a low price. Generally, clays serve as supports for metal oxides by increasing the number of active sites present on the surface and can be applied for various purposes such as adsorption, catalysis and photocatalysis. Some of the materials that are currently highlighted are niobium compounds, in particular, its oxides, by its characteristics such as high acidity, rigidity, water insolubility, oxidative and photocatalytic properties. In this scenario, the study aimed preparing a composite material oxyhydroxide niobium (NbO2OH) / sodium vermiculite clay and evaluate its effectiveness with respect to the natural clay (V0) and NbO2OH. The composite was prepared by precipitation-deposition method and then characterized by X-ray diffraction, infrared spectroscopy (XRD), energy dispersive X-ray (EDS), thermal analysis (TG/DTG), scanning electron microscopy (SEM), N2 adsorption-desorption and investigation of distribution of load. The application of the material NbO2OH/V0 was divided in two steps: first through oxidation and adsorption methods, and second through photocatalytic activity using solar irradiation. Studies of adsorption, oxidation and photocatalytic oxidation monitored the percentage of color removal from the dye methylene blue (MB) by UV-Vis spectroscopy. The XRD showed a decrease in reflection d (001) clay after modification; the FTIR indicated the presence of both the clay when the oxyhydroxide niobium to present bands in 1003 cm-1 related to Si-O stretching bands and 800 cm-1 to the Nb-O stretching. The presence of niobium was also confirmed by EDS indicated that 17 % by mass amount of the metal. Thermal analysis showed thermal stability of the composite at 217 °C and micrographs showed that there was a decrease in particle size. The investigation of the surface charge of NbO2OH/V0 found that the material exhibits a heterogeneous surface with average low and high negative charges. Adsorption tests showed that the composite NbO2OH/V0 higher adsorption capacity to remove 56 % of AM, while the material removed from V0 only 13 % showed no NbO2OH and adsorptive capacity due to the formation of H-aggregates. The percent removal of dye color for the oxidation tests showed little difference from the adsorption, being 18 and 66 % removal of dye color for V0 and NbO2OH/V0 respectively. The NbO2OH/V0 material shows excellent photocatalytic activity managing to remove just 95,5 % in 180 minutes of the color of MB compared to 41,4 % and 82,2 % of V0 the NbO2OH, proving the formation of a new composite with distinct properties of its precursors.
Resumo:
Compared to conventional composites, polymer matrix nanocomposites typically exhibit enhanced properties at a significantly lower filler volume fraction. Studies published in the literature indicate t hat the addition of nanosilicate s can increase the resistance to flame propagation in polymers. In this work, a treatment of montmorillonite (MMT) nano clay and the effect of its ad dition o n flame propagation characteristics of vinyl ester were studied. The resea rch was conducted in two stages. The first stage focused on the purification and activation of the MMT clay collected from a natural deposit to improve compatibility with the polymer matrix . Clay modification with sodium acetate was also studied to improve particle dispersion in the polymer. The second step was focused on the effect of the addition of the treated clay on nanocomposites ’ properties. Nanocomposites with clay con tents of 1, 2, 4 wt. % were processed. T he techniques for the characterization of the clay included X - ray fluorescence (XRF), X - r ay d iffraction (XRD), thermogravimetric a nalysis (TGA), d ifferential scanning c alorimetry (DSC) , s urface area (BET) and Fourier transform infrared spectroscopy (FTIR). For t he characterization of the nanocomposites , the techniques used were thermogravimetric a nalysis (TGA) , differential scanning c alorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) , scanning electron mi croscopy (SEM), transmission electron m icroscopy (TEM), and the determination of tensile strength, modulus of elasticity and resistance to flame propagation. According to the results, the purification and activation treatment with freeze - drying used in thi s work for the montmorillonite clay was efficient to promote compatibility and dispersion in the polymer matrix as evidenced by the characterization of the nanocomposite s . It was also observed that the clay modifica tion using sodium acetate did not produce any significant effect to improve compatibilization of the clay with the polymer. The addition of the treated MMT resulted in a reduction of up to 53% in the polymer flame propagation speed and did not affect the mechanical tensile strength and modulus o f elas ticity of the polymer, indicating compatibility between the clay and polymer. The effectiveness in reducing flame propagation speed peaked for nanocomposites with 2 wt. % clay, indicating that this is the optimum clay concentration for this property. T he clay treatment used in this work enables the production of vinylester matrix nanocomposites with flame - retardancy properties .
Resumo:
Chitosan is a polymer biocompatibility and biodegradability widely used in drug delivery systems. The co-crosslinking of chitosan with sodium sulfate and genipin, to form particulate systems is related of making them more resistant to acidic pH and to modulate the release kinetics for the oral route. Triamcinolone is a glucocorticoid with anti-inflammatory and immunosuppressive actions. The nanoparticles were prepared by co-crosslinking and characterized for particle size, PDI, zeta potential, crosslinking degree, encapsulation rate, morphology, infrared spectroscopy, thermal analysis, release kinetics and cells studies. The nanoparticles were prepared initially without genipin with sodium sulphate and the particles parameters were monitored in function of different ratio of drug / polymer, different concentrations of sodium sulfate and polysorbate 80 and the drip mode of crosslinkers on polymers. After optimizing conditions, the chosen system parameters without genipin included mean diameter of 312.20 ± 5.70 nm, PDI 0.342 ± 0.013 and zeta potential of 20.18 ± 2.28 mV. The genipin was introduced into the system analyzing different concentrations (0.5, 1.0 and 2.0 mM) and crosslinking times (3, 6, 12 and 24 h). Evaluating crosslinking time with genipin (0.5 mM) it was showed that varying the genipin reaction time the systems size ranged from 235.1 to 334.4 nm, the PDI from 0.321 to 0.392 and zeta potential 20.92 to 30.39 mV. The crosslinking degree that coud vary from 14 to 30 %. Nanoparticles without genipina, 6 h and 24 h crosslinking time were dried by spray-drying method. Analysis by scanning electron micrograph (SEM) revealed that the microparticles showed spherical morphology. The encapsulation rate was 75 ± 2.3 % using validated HPLC methodology. The infrared analysis showed chemical interactions between the components of the formulation. Thermal analysis showed that systems with a higher degree of crosslinking had a higher thermal stability. On release kinetics, increasing the degree of crosslinking was able to decrease the concentration and rate of release of triamcinolone. In studies with liver cancer cells (HepG2) and colon (HT-29), the microparticulate prepared with triamcinolone and 24 h of crosslinking with genipin showed a potential for antitumor activity in hepatic cell line HepG2. Therefore, a new delivery system for triamcinolone on polymeric nanoparticles of chitosan cocrosslinked with genipin and sodium sulfate was obtained with hepatic antitumor potential.
Resumo:
The Sustainability has been evidence in the world today; organizations have sought to be more and more into this philosophy in their processes, whether products or attendance. In the present work were manufactured eco-composites with animal fiber (dog wool) that is currently discarded into the environment without any use. Project phases consisted on the initial treatment of fibers with alkaline solution (NaOH) at 0.05 mols for removal of impurities, developing methods to convert these fibers (reinforcement) blended with castor oil polyurethane (matrix) in eco-composite with different proportions (5%, 10%, 15% and 20%). Fiber properties were evaluated by analysis of SEM, XRD and FTIR. The composites were produced by compression molding with dimensions 30x30x1cm. For characterization of the composites the following tests were performed: mechanical (tensile, compression, shore hardness A) according the standards and testing water absorption, moisture regain and biodegradation. The analysis of thermal properties on fibers and composites were by TG, DSC, thermal conductivity, resistivity, heat capacity and thermal resistance. Analyzing the results of these tests, it was observed that the composite reinforced with 20% showed a better thermal performance between others composites and dimensional stability when compared to commercial thermal insulation. Also is possible to observe a balance in moisture absorption of the composite being shown with its higher absorption rate in this same sample (20%). The micrographs show the fiber interaction regions with polyurethane to fill the empty spaces. In hardness and compression testing can identify that with increasing percentage of the fiber material acquires a greater stiffness by making a higher voltage is used for forming necessary. So by the tests performed in eco-composites, the highest percentage of fiber used as reinforcement in their composition obtained a better performance compared to the remaining eco-composites, reaching values very close to the PU.
Resumo:
This work aims to manufacture and characterize a hybrid plastic composite with the matrix isophthalic polyester resin base and having as reinforcing glass fiber and the dry endocarp of coconut (Coco nucifera Linn) in the form of particles as filler. The composite was made industrially in Tecniplas Industry and Trade LTDA. in the form of plate, and was manufactured process made by the manual lamination (Hand Lay Up). From the plate they were prepared test specimens for testing density, water absorption, uniaxial traction in dry and wet states, and testing of bending, as well as studies on the behavior of the generated fractures, macroscopic and microscopic, in mechanical tests through. All tests were performed in order to find the most viable applications the hybrid composite manufactured. The tensile and bending tests were analyzed last tensile properties, elasticity and deformation module. After the studies, it is observed that the percentage moisture absorbed was 3.03%. The presence of moisture in the tensile test meant a decrease of 19.77% from last stand, and 5.26% in the elastic modulus. For bending tests gave an average value of 69.13 MPa flexural strength. The results show the application of hybrid composite studied in lightweight structures, indoors, which require low / medium performance traction demands, and which involve flexural requests.
Resumo:
Human activities alter soil features, causing the deterioration of its quality. Land use and occupation in drainage basins of water supply reservoirs can change the environmental soil quality and, thus, lead to the expansion of the soil potential of being a diffuse pollution source. In the Brazilian semiarid region, the soils are generally shallow with high susceptibility to erosion, favoring the sediment and nutrients input into the superficial waterbodies, contributing to the eutrophication process. Moreover, this region has high temperatures and high evapotranspiration rates, that are generally higher than the precipitation rates, causing a negative hydric balance and big volume losses by evaporation. The water volume reduction increases the nutrients’ concentration and, therefore, exacerbates the eutrophication process, deteriorating the water quality. Thereby, we hypothesized that the eutrophication process of semiarid reservoirs is intensified both by the extreme climatic events of prolonged drought, and by the diffuse pollution due to the basin land use and occupation. The study aimed to test whether the land use and occupation activities of the basin and the severe drought events intensify the eutrophication process of a semiarid tropical reservoir. To verify the influence of human activities carried out in the water supply of drainage basin on the soil quality and the eutrophication process, we conducted the mapping of the kind of use and occupation, as well the calculation of erosion for each activity and the soil quality evaluation of the riparian zone and water quality of the water supply. For the water analyses, the samplings were carried out monthly in the deeper point, near dam. For the soil, deformed composite samples were taken for the physical and chemical attributes analysis, according to the identified land use and occupation classes. The results showed that extreme droughts drastically reduces the water volume and elevates the nutrients concentration, contributing, thus, to a bigger degradation of water quality. Furthermore, we verified that human activities in the drainage basin promote the diffuse pollution, by increasing the soil susceptibility to erosion and nutrients contents. Summarizing, our results support the investigated hypothesis that activities of land use and occupation and extreme drought generate a combined effect that provide the intensification of eutrophication process of semiarid reservoirs.
Resumo:
With the emergence of new technologies, has grown the need to use new materials, and this has intensified research on the collection and use of materials from renewable sources, is to reduce production costs and / or environmental impact. In this context, it was found that the sheath coconut straw, can be utilized as raw material for the production of a eco-composite that can be used as a thermal and acoustic insulator. After selected from the coconut sheaths were subjected to treatment with aqueous 2 % sodium hydroxide (NaOH). The composite study was produced with the sheath and coconut natural latex, with coconut sheath percentage in the proportions 15%, 25% and 35% of the total compound volume. Physical, thermal and acoustic properties of the composites were analyzed in order to obtain data on the use of viability as thermoacoustic insulation. The CP15 composites, CP25 and CP35 showed thermal conductivity 0.188 W/m.K, 0.155 W/m.K and 0.150 W/m.K, respectively. It can be applied as thermal insulation in hot systems to 200 ° C. The CP35 composite was more efficient as a thermal and acoustic insulation, providing 20% noise reduction, 31% and 34% for frequencies of 1 kHz, 2 kHz and 4 kHz, respectively. The analyzes were based on ABNT, ASTM, UL. Based on these results, it can be concluded that the eco-composite produced the hem of coconut can be used as thermal and acoustic insulation. Thus, it gives a more noble end to this material, which most often is burned or disposed of improperly in the environment.
Resumo:
With the emergence of new technologies, has grown the need to use new materials, and this has intensified research on the collection and use of materials from renewable sources, is to reduce production costs and / or environmental impact. In this context, it was found that the sheath coconut straw, can be utilized as raw material for the production of a eco-composite that can be used as a thermal and acoustic insulator. After selected from the coconut sheaths were subjected to treatment with aqueous 2 % sodium hydroxide (NaOH). The composite study was produced with the sheath and coconut natural latex, with coconut sheath percentage in the proportions 15%, 25% and 35% of the total compound volume. Physical, thermal and acoustic properties of the composites were analyzed in order to obtain data on the use of viability as thermoacoustic insulation. The CP15 composites, CP25 and CP35 showed thermal conductivity 0.188 W/m.K, 0.155 W/m.K and 0.150 W/m.K, respectively. It can be applied as thermal insulation in hot systems to 200 ° C. The CP35 composite was more efficient as a thermal and acoustic insulation, providing 20% noise reduction, 31% and 34% for frequencies of 1 kHz, 2 kHz and 4 kHz, respectively. The analyzes were based on ABNT, ASTM, UL. Based on these results, it can be concluded that the eco-composite produced the hem of coconut can be used as thermal and acoustic insulation. Thus, it gives a more noble end to this material, which most often is burned or disposed of improperly in the environment.