920 resultados para Composite materials. Magnetic markers. Non-destructive evaluation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biorefining is defined as sustainable conversion of biomass into marketable products and energy. Forests cover almost one third of earth’s land area, and account for approximately 40% of the total annual biomass production. In forest biorefining, the wood components are, in addition to the traditional paper and board products, converted into chemicals and biofuels. The major components in wood are cellulose, hemicelluloses, and lignin. The main hemicellulose in softwoods, which are of interest especially for the Nordic forest industry, is O-acetyl galactoglucomannan (GGM). GGM can be isolated in industrial scale from the waste waters of the mechanical pulping process, but is not yet today industrially utilized. In order to attain desired properties of GGM for specific end-uses, chemical and enzymatic modifications can be performed. Regioselective modifications of GGM, and other galactose-containing polysaccharides were done by oxidations, and by combining oxidations with subsequent derivatizations of the formed carbonyl or carboxyl groups. Two different pathways were investigated: activation of the C-6 positions in different sugar units by TEMPO-mediated oxidation, and activation of C-6 position in only galactose-units by oxidation catalyzed by the enzyme galactose oxidase. The activated sites were further selectively derivatized; TEMPO-oxidized GGM by a carbodiimide-mediated reaction forming amides, and GO-oxidized GGM by indium-mediated allylation introducing double or triple bonds to the molecule. In order to better understand the reaction, and to develop a MALDI-TOF-MS method for characterization of regioselectively allylated GGM, α-D-galactopyranoside and raffinose were used as model compounds. All reactions were done in aqueous media. To investigate the applicability of the modified polysaccharides for, e.g., cellulose surface functionalization, their sorption onto pulp fibres was studied. Carboxylation affects the sorption tendency significantly; a higher degree of oxidation leads to lower sorption. By controlling the degree of oxidation of the polysaccharides and the ionic strength of the sorption media, high degrees of sorption of carboxylated polysaccharides onto cellulose could, however, be obtained. Anionic polysaccharides were used as templates during laccase-catalyzed polymerization of aniline, offering a green, chemo-enzymatic route for synthesis of conducting polyaniline (PANI) composite materials. Different polysaccharide templates, such as, native GGM, TEMPO-oxidized GGM, naturally anionic κ-carrageenan, and nanofibrillated cellulose produced by TEMPO-oxidation, were assessed. The conductivity of the synthesized polysaccharide/PANI biocomposites varies depending on the polysaccharide template; κ-CGN, the anionic polysaccharide with the lowest pKa value, produces the polysaccharide/PANI biocomposites with the highest conductivity. The presented derivatization, sorption, and polymerization procedures open new application windows for polysaccharides, such as spruce GGM. The modified polysaccharides and the conducting biocomposites produced provide potential applications in biosensors, electronic devices, and tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bread-making quality is one of the most important targets in the genetic improvement of wheat. Although extensive analyses of quality traits such as farinography, sodium dodecyl sulfate (SDS) sedimentation, alveography, and baking are made in breeding programs, these analyses require high amounts of seeds which are obtained only in late generations. In this experiment the statistical correlations between the high molecular weight subunit of glutenin and bread-making quality measured by alveograph, farinograph and SDS sedimentation were evaluated. Seventeen wheat genotypes were grown under the same conditions, each producing about 1 kg of seeds for the evaluations. The high molecular weight (HMW) glutenin subunits were analyzed by SDS-PAGE. Statistical correlations were highly significant between HMW glutenin subunits and alveograph and SDS sedimentation. These results indicate the possibility of manipulating major genes for wheat seed quality by coupling traditional breeding with non-destructive single seed analysis. Only half seed is necessary to perform the SDS-PAGE analysis. Therefore, the other half seed can be planted to generate the progeny. Seed yield and SDS sedimentation were statistically correlated, indicating the possibility of simultaneous selection for both traits

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this thesis is to study the impact of different mineral fillers and fire retardants on the reaction-to-fire properties of extruded/coextruded wood-plastic composites (WPCs). The impact of additives on the flammability properties of WPCs is studied by cone calorimetry. The studied properties are ignition time, peak heat release rate, total heat release, total smoke production, and mass loss rate. The effects of mineral fillers and fire retardants were found to vary with the type of additive, the type of additive combinations, the amount of additives, as well as the production method of the WPCs. The study shows that talc can be used to improve the properties of extruded WPCs. Especially ignition time, peak heat release rate and mass loss rate were found to be improved significantly by talc. The most significant improvement in the fire retardancy of coextruded WPCs was achieved in combinations of natural graphite and melamine. Ignition time, peak heat release rate and total smoke production were improved essentially. High increase in smoke production was found in samples where the amount of ammonium polyphosphate was 10% or higher. Coextrusion as a structural modification was found as a promising way to improve the flammability properties of composite materials in a cost-effective way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes are highly versatile materials; new applications using them are continuously being developed. Special attention is being dedicated to the possible use of multiwalled carbon nanotubes in biomaterials contacting with bone. However, carbon nanotubes are also controversial in regards to effects exerted on living organisms. Carbon nanotubes can be used to improve the tribological properties of polymer/composite materials. Ultrahigh molecular weight polyethylene (UHMWPE) is a polymer widely used in orthopedic applications that imply wear and particle generation. We describe here the response of human osteoblast-like MG63 cells after 6 days of culture in contact with artificially generated particles from both UHMWPE polymer and multiwalled carbon nanotubes (MWCNT)/UHMWPE nanocomposites. This novel composite has superior wear behavior, having thus the potential to reduce the number of revision hip arthroplasty surgeries required by wear failure of acetabular cups and diminish particle-induced osteolysis. The results of an in vitro study of viability and proliferation and interleukin-6 (IL-6) production suggest good cytocompatibility, similar to that of conventional UHMWPE (WST-1 assay results are reported as percentage of control ± SD: UHMWPE = 96.19 ± 7.92, MWCNT/UHMWPE = 97.92 ± 8.29%; total protein: control = 139.73 ± 10.78, UHMWPE = 137.07 ± 6.17, MWCNT/UHMWPE = 163.29 ± 11.81 µg/mL; IL-6: control = 90.93 ± 10.30, UHMWPE = 92.52 ± 11.02, MWCNT/UHMWPE = 108.99 ± 9.90 pg/mL). Standard cell culture conditions were considered as control. These results, especially the absence of significant elevation in the osteolysis inductor IL-6 values, reinforce the potential of this superior wear-resistant composite for future orthopedic applications, when compared to traditional UHMWPE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal models of intervertebral disc degeneration play an important role in clarifying the physiopathological mechanisms and testing novel therapeutic strategies. The objective of the present study is to describe a simple animal model of disc degeneration involving Wistar rats to be used for research studies. Disc degeneration was confirmed and classified by radiography, magnetic resonance and histological evaluation. Adult male Wistar rats were anesthetized and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7 and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s. To grade the severity of intervertebral disc degeneration, we measured the intervertebral disc height from radiographic images 7 and 30 days after the injury, and the signal intensity T2-weighted magnetic resonance imaging. Histological analysis was performed with hematoxylin-eosin and collagen fiber orientation using picrosirius red staining and polarized light microscopy. Imaging and histological score analyses revealed significant disc degeneration both 7 and 30 days after the lesion, without deaths or systemic complications. Interobserver histological evaluation showed significant agreement. There was a significant positive correlation between histological score and intervertebral disc height 7 and 30 days after the lesion. We conclude that the tail disc puncture method using Wistar rats is a simple, cost-effective and reproducible model for inducing disc degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of some process variables on the productivity of the fractions (liquid yield times fraction percent) obtained from SCFE of a Brazilian mineral coal using isopropanol and ethanol as primary solvents is analyzed using statistical techniques. A full factorial 23 experimental design was adopted to investigate the effects of process variables (temperature, pressure and cosolvent concentration) on the extraction products. The extracts were analyzed by the Preparative Liquid Chromatography-8 fractions method (PLC-8), a reliable, non destructive solvent fractionation method, especially developed for coal-derived liquids. Empirical statistical modeling was carried out in order to reproduce the experimental data. Correlations obtained were always greater than 0.98. Four specific process criteria were used to allow process optimization. Results obtained show that it is not possible to maximize both extract productivity and purity (through the minimization of heavy fraction content) simultaneously by manipulating the mentioned process variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric energy demand has been growing constantly as the global population increases. To avoid electric energy shortage, renewable energy sources and energy conservation are emphasized all over the world. The role of power electronics in energy saving and development of renewable energy systems is significant. Power electronics is applied in wind, solar, fuel cell, and micro turbine energy systems for the energy conversion and control. The use of power electronics introduces an energy saving potential in such applications as motors, lighting, home appliances, and consumer electronics. Despite the advantages of power converters, their penetration into the market requires that they have a set of characteristics such as high reliability and power density, cost effectiveness, and low weight, which are dictated by the emerging applications. In association with the increasing requirements, the design of the power converter is becoming more complicated, and thus, a multidisciplinary approach to the modelling of the converter is required. In this doctoral dissertation, methods and models are developed for the design of a multilevel power converter and the analysis of the related electromagnetic, thermal, and reliability issues. The focus is on the design of the main circuit. The electromagnetic model of the laminated busbar system and the IGBT modules is established with the aim of minimizing the stray inductance of the commutation loops that degrade the converter power capability. The circular busbar system is proposed to achieve equal current sharing among parallel-connected devices and implemented in the non-destructive test set-up. In addition to the electromagnetic model, a thermal model of the laminated busbar system is developed based on a lumped parameter thermal model. The temperature and temperature-dependent power losses of the busbars are estimated by the proposed algorithm. The Joule losses produced by non-sinusoidal currents flowing through the busbars in the converter are estimated taking into account the skin and proximity effects, which have a strong influence on the AC resistance of the busbars. The lifetime estimation algorithm was implemented to investigate the influence of the cooling solution on the reliability of the IGBT modules. As efficient cooling solutions have a low thermal inertia, they cause excessive temperature cycling of the IGBTs. Thus, a reliability analysis is required when selecting the cooling solutions for a particular application. The control of the cooling solution based on the use of a heat flux sensor is proposed to reduce the amplitude of the temperature cycles. The developed methods and models are verified experimentally by a laboratory prototype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fast and non-destructive indicators were evaluated as tools to measure the technological quality of Arabica and Robusta coffee. Accordingly, considering the roasting intensity in highly valuable commercial samples, volume, mass, apparent density, moisture, total ash, ash insoluble in hydrochloric acid, and ether extract were characterized. The chromatic parameters L*, C*, Hº were measured using illuminants D65 and C. It was found that in roasted coffee beans, the parameters L*, C*, Hº, and coordinate b* had an antagonist interaction due to an increase in the roasting intensity, whereas after milling, only L* and Hº decreased progressively. Considering that the parameters L* and Hº followed similar patterns using both illuminants, D65 and C, it can be concluded that they are appropriate to evaluate coffee colour changes during roasting, enabling a relationship with coffee quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accelerating adoption of electrical technologies in vehicles over the recent years has led to an increase in the research on electrochemical energy storage systems, which are among the key elements in these technologies. The application of electrochemical energy storage systems for instance in hybrid electrical vehicles (HEVs) or hybrid mobile working machines allows tolerating high power peaks, leading to an opportunity to downsize the internal combustion engine and reduce fuel consumption, and therefore, CO2 and other emissions. Further, the application of electrochemical energy storage systems provides an option of kinetic and potential energy recuperation. Presently, the lithium-ion (Li-ion) battery is considered the most suitable electrochemical energy storage type in HEVs and hybrid mobile working machines. However, the intensive operating cycle produces high heat losses in the Li-ion battery, which increase its operating temperature. The Li-ion battery operation at high temperatures accelerates the ageing of the battery, and in the worst case, may lead to a thermal runaway and fire. Therefore, an appropriate Li-ion battery cooling system should be provided for the temperature control in applications such as HEVs and mobile working machines. In this doctoral dissertation, methods are presented to set up a thermal model of a single Li-ion cell and a more complex battery module, which can be used if full information about the battery chemistry is not available. In addition, a non-destructive method is developed for the cell thermal characterization, which allows to measure the thermal parameters at different states of charge and in different points of cell surface. The proposed models and the cell thermal characterization method have been verified by experimental measurements. The minimization of high thermal non-uniformity, which was detected in the pouch cell during its operation with a high C-rate current, was analysed by applying a simplified pouch cell 3D thermal model. In the analysis, heat pipes were incorporated into the pouch cell cooling system, and an optimization algorithm was generated for the estimation of the optimalplacement of heat pipes in the pouch cell cooling system. An analysis of the application of heat pipes to the pouch cell cooling system shows that heat pipes significantly decrease the temperature non-uniformity on the cell surface, and therefore, heat pipes were recommended for the enhancement of the pouch cell cooling system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X-ray test is a precise, fast and non-destructive method to detect mechanical damage in seeds. In the present study, the efficiency of X-ray analysis in identifying the extent of mechanical damage in sweet corn seeds and its relationship with germination and vigor was evaluated. Hybrid 'SWB 551' (sh2) seeds with round (R) and flat (F) shapes were classified as large (L), medium (M1, M2 and M3) and small (S), using sieves with round and oblong screens. After artificial exposure to different levels of damage (0, 1, 3, 5 and 7 impacts), seeds were X-rayed (15 kV, 5 min) and submitted to germination (25 °C/5 days) and cold (10 °C/7 days) tests. Digital images of normal and abnormal seedlings and ungerminated seeds from germination and cold tests were jointly analyzed with the seed X-ray images. Results showed that damage affecting the embryonic axis resulted in abnormal seedlings or dead seeds in the germination and cold tests. The X-ray analysis is efficient for identifying mechanical damage in sweet corn seeds, allowing damage severity to be associated with losses in germination and vigor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interest towards wood-plastic composites (WPCs) is growing due to growing interest in materials with novel properties, which can replace more traditional materials, such as wood and plastic. The use of recycled materials in manufacture is also a bonus. However, the application ofWPCs has been limited because of their often poor mechanical and barrier properties, which can be improved by incorporation of the reinforcing fillers. Nanosized fillers, having a large surface area, can significantly increase interfacial interactions in the composite on molecular level, leading to materials with new properties. The review summarizes the development trends in the use on nanofillers for WPC design, which were reported in accessible literature during the last decade. The effect of the nanofillers on the mechanical properties, thermal stability, flammability and wettability ofWPC is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to determine the effect of increased soil moisture levels on the decomposition processes in a peat-extracted bog. Field experiments, in which soil moisture levels were manipulated, were conducted using 320 microcosms in the Wainfleet Bog from May 2002 to November 2004. Decomposition was measured using litter bags and monitoring the abundance of macro invertebrate decomposers known as Collembola. Litter bags containing wooden toothpicks (n=2240), filter paper (n=480) and Betula pendula leaves (n=40) were buried in the soil and removed at regular time intervals up to one year. The results of the litter bag studies demonstrated a significant reduction of the decomposition of toothpicks (p<0.001), filter paper (p<0.001), and Betula pendula leaves (pnon-destructive method in the microcosms. By contrast the effect of increased moisture levels on the abundance of Collembola was more variable and difficult to interpret. The conclusions of this study indicate that the Wainfleet Bog is a highly disturbed peatland and that the greatest reductions in decomposition can be obtained by restoring the soil moisture levels near those of undisturbed conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La construction modulaire est une stratégie émergente qui permet la fabrication de matériaux ordonnés à l’échelle atomique. Elle consiste en l’association programmée de sous-unités moléculaires via des sites réactifs judicieusement sélectionnés. L’application de cette stratégie a d’ores et déjà produit des matériaux aux propriétés remarquables, notamment les réseaux organiques covalents, dans lesquels des atomes de carbone et d’autres éléments légers sont liés de manière covalente. Bien que des matériaux assemblés par des interactions non-covalentes puissent être préparés sous la forme de monocristaux macroscopiques de cette façon, ceci n’était pas possible dans le cas des réseaux organiques covalents. Afin de pallier cette lacune, nous avons choisi d’étudier des réactions de polymérisation réversibles ayant lieu par un mécanisme d’addition. En effet, l’hypothèse de départ de cette thèse suppose qu’un tel processus émule le phénomène de cristallisation classique – régi par des interactions non-covalentes – et favorise la formation de monocristaux de dimensions importantes. Pour tester la validité de cette hypothèse, nous avons choisi d’étudier la polymérisation des composés polynitroso aromatiques puisque la dimérisation des nitrosoarènes est réversible et procède par addition. Dans un premier temps, nous avons revu en profondeur la littérature portant sur la dimérisation des nitrosoarènes. À partir des données alors recueillies, nous avons conçu, dans un deuxième temps, une série de composés polynitroso ayant le potentiel de former des réseaux organiques covalents bi- et tridimensionnels. Les paramètres thermodynamiques propres à leur polymérisation ont pu être estimés grâce à l’étude de composés mononitroso modèles. Dans un troisième temps, nous avons synthétisé les divers composés polynitroso visés par notre étude. Pour y parvenir, nous avons eu à développer une nouvelle méthodologie de synthèse des poly(N-arylhydroxylamines) – les précurseurs directs aux composés polynitroso. Dans un quatrième temps, nous avons étudié la polymérisation des composés polynitroso. En dépit de difficultés d’ordre pratique causées par la polymérisation spontanée de ces composés, nous avons pu identifier les conditions propices à leur polymérisation en réseaux organiques covalents hautement cristallins. Plusieurs nouveaux réseaux covalents tridimensionnels ont ainsi été produits sous la forme de monocristaux de dimensions variant entre 30 µm et 500 µm, confirmant la validité de notre hypothèse de départ. Il a par conséquent été possible de résoudre la structure de ces cristaux par diffraction de rayons X sur monocristal, ce qui n’avait jamais été possible dans le passé pour ce genre de matériau. Ces cristaux sont remarquablement uniformes et les polymères qui les composent ont des masses moléculaires extrêmement élevées (1014-1017 g/mol). Toutefois, la polymérisation de la majorité des composés polynitroso étudiés a plutôt conduit à des solides amorphes ou à des solides cristallins constitués de la forme monomérique de ces composés. D’autres composés nitroso modèles ont alors été préparés afin d’expliquer ce comportement, et des hypothèses ont été émises à partir des données alors recueillies. Enfin, les structures de plusieurs composés polynitroso ayant cristallisés sous une forme monomérique ont été analysés en détails par diffraction des rayons X. Notre stratégie, qui consiste en l’utilisation de monomères ayant la capacité de polymériser spontanément par un processus d’addition réversible, semble donc prometteuse pour obtenir de nouveaux réseaux covalents monocristallins à partir de composés polynitroso ou d’autres monomères de nature similaire. De plus, les résultats présentés au cours de cette thèse établissent un lien entre la science des polymères et la chimie supramoléculaire, en illustrant comment des structures ordonnées, covalentes ou non covalentes, peuvent toutes deux être construites de façon prévisible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans le cadre de l’évaluation pré-chirurgicale de patients épileptiques, il est impératif de déterminer la spécialisation hémisphérique du langage, ainsi que de localiser les aires du langage au sein de cet hémisphère. De nouvelles méthodes d’évaluation non- invasives doivent être mises au point afin de diminuer les risques associés aux méthodes plus invasives telles que le test à l’amobarbital intracarotidien (TAI). L’objectif principal de cette thèse est donc de développer un protocole d’évaluation pré-chirurgicale alternatif et non-invasif à l’aide de la magnétoencéphalographie (MEG) pour la latéralisation et la localisation du langage, incluant la mémoire verbale qui serait éventuellement accessible à une population pédiatrique francophone épileptique. L’article 1 présente une recension de la littérature résumant les différentes études en MEG ayant pour objectif l’évaluation pré-chirurgicale du langage. Trente-sept articles en MEG ont été analysés pour déterminer quelles tâches permettaient d’obtenir les meilleurs résultats de latéralisation intrahémisphérique et de localisation du langage pour l’évaluation du langage réceptif et expressif chez des sujets neurologiquement sains et épileptiques. Parmi les tests retenus, l’épreuve de reconnaissance de mots permet d’évaluer le langage réceptif et la mémoire verbale, tandis que des épreuves de fluence verbale telles que la génération de verbes permettent d’évaluer le langage expressif de façon à obtenir de très bons résultats. L’article 2 a permis de valider un protocole auprès de sujets neurologiquement sains à l’aide des épreuves identifiées dans l’article 1. Le protocole utilisé comprend une tâche de langage réceptif et de mémoire verbale (une épreuve de reconnaissance de mots) et une tâche de langage expressif (une épreuve de fluence verbale). Suite à la validation du protocole à l’aide d’analyses par composantes principales, les épreuves ont été administrées à un groupe de patients épileptiques. Les index de latéralité et les analyses de sources i révèlent que la MEG permet de localiser et de latéraliser les fonctions langagières et pourrait donc être utilisée comme méthode d'évaluation du langage lors de l'évaluation pré- chirurgicale auprès de patients épileptiques. Toutefois, alors que l’épreuve de mémoire verbale a permis d’obtenir les meilleurs résultats auprès de l’ensemble des participants, l’épreuve de fluence verbale n’a fourni des informations supplémentaires que chez un seul patient et chez aucun participant neurologiquement sain. En résumé, les deux articles de cette thèse démontrent le potentiel clinique de la MEG pour l’évaluation pré-chirurgicale de patients souffrant d’une épilepsie réfractaire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The laser induced non-destructive photoacoustic technique has been employed to measure the thermal diffusivity of lanthanum phosphate ceramics prepared by the sol–gel route. The thermal diffusivity value was evaluated by knowing the transition frequency between the thermally thin to thermally thick region from the log–log plot of photoacoustic amplitude versus chopping frequency. Analysis of the data was carried out on the basis of the one-dimensional model of Rosencwaig and Gersho. The present investigation reveals that the sintering temperature has great influence on the propagation of heat carriers and hence on the thermal diffusivity value. The results were interpreted in terms of variations in porosity with sintering temperature as well as with changes in grain size.