939 resultados para Complementarity constraints
Resumo:
Seagrass meadows are highly productive habitats found along many of the world's coastline, providing important services that support the overall functioning of the coastal zone. The organic carbon that accumulates in seagrass meadows is derived not only from seagrass production but from the trapping of other particles, as the seagrass canopies facilitate sedimentation and reduce resuspension. Here we provide a comprehensive synthesis of the available data to obtain a better understanding of the relative contribution of seagrass and other possible sources of organic matter that accumulate in the sediments of seagrass meadows. The data set includes 219 paired analyses of the carbon isotopic composition of seagrass leaves and sediments from 207 seagrass sites at 88 locations worldwide. Using a three source mixing model and literature values for putative sources, we calculate that the average proportional contribution of seagrass to the surface sediment organic carbon pool is ∼50%. When using the best available estimates of carbon burial rates in seagrass meadows, our data indicate that between 41 and 66 gC m−2 yr−1 originates from seagrass production. Using our global average for allochthonous carbon trapped in seagrass sediments together with a recent estimate of global average net community production, we estimate that carbon burial in seagrass meadows is between 48 and 112 Tg yr−1, showing that seagrass meadows are natural hot spots for carbon sequestration.
Resumo:
Pyrite formation within and directly below sapropels in the eastern Mediterranean was governed by the relative rates of sulphide production and Fe liberation and supply to the organic-rich layers. At times of relatively high [SO4]2- reduction, sulphide could diffuse downward from the sapropel and formed pyrite in underlying sediments. The sources of Fe for pyrite formation comprised detrital Fe and diagenetically liberated Fe(II) from sapropel-underlying sediments. In organic-rich sapropels, input of Fe from the water column via Fe sulphide formation in the water may have been important as well. Rapid pyrite formation at high saturation levels resulted in the formation of framboidal pyrite within the sapropels, whereas below the sapropels slow euhedral pyrite formation at low saturation levels occurred. d34S values of pyrite are -33 per mil to -50 per mil. Below the sapropels d34S is lower than within the sapropels, as a result of increased sulphide re-oxidation at times of relatively high sulphide production and concentration when sulphide could escape from the sediment. The percentage of initially formed sulphide that was re-oxidized was estimated from organic carbon fluxes and burial efficiencies in the sediment. It ranges from 34% to 80%, varying significantly between sapropels. Increased palaeoproductivity as well as enhanced preservation contributed to magnified accumulation of organic matter in sapropels.
Resumo:
A significant observational effort has been directed to investigate the nature of the so-called dark energy. In this dissertation we derive constraints on dark energy models using three different observable: measurements of the Hubble rate H(z) (compiled by Meng et al. in 2015.); distance modulus of 580 Supernovae Type Ia (Union catalog Compilation 2.1, 2011); and the observations of baryon acoustic oscilations (BAO) and the cosmic microwave background (CMB) by using the so-called CMB/BAO of six peaks of BAO (a peak determined through the Survey 6dFGS data, two through the SDSS and three through WiggleZ). The statistical analysis used was the method of the χ2 minimum (marginalized or minimized over h whenever possible) to link the cosmological parameter: m, ω and δω0. These tests were applied in two parameterization of the parameter ω of the equation of state of dark energy, p = ωρ (here, p is the pressure and ρ is the component of energy density). In one, ω is considered constant and less than -1/3, known as XCDM model; in the other the parameter of state equantion varies with the redshift, where we the call model GS. This last model is based on arguments that arise from the theory of cosmological inflation. For comparison it was also made the analysis of model CDM. Comparison of cosmological models with different observations lead to different optimal settings. Thus, to classify the observational viability of different theoretical models we use two criteria information, the Bayesian information criterion (BIC) and the Akaike information criteria (AIC). The Fisher matrix tool was incorporated into our testing to provide us with the uncertainty of the parameters of each theoretical model. We found that the complementarity of tests is necessary inorder we do not have degenerate parametric spaces. Making the minimization process we found (68%), for the Model XCDM the best fit parameters are m = 0.28 ± 0, 012 and ωX = −1.01 ± 0, 052. While for Model GS the best settings are m = 0.28 ± 0, 011 and δω0 = 0.00 ± 0, 059. Performing a marginalization we found (68%), for the Model XCDM the best fit parameters are m = 0.28 ± 0, 012 and ωX = −1.01 ± 0, 052. While for Model GS the best settings are M = 0.28 ± 0, 011 and δω0 = 0.00 ± 0, 059.
Resumo:
A significant observational effort has been directed to investigate the nature of the so-called dark energy. In this dissertation we derive constraints on dark energy models using three different observable: measurements of the Hubble rate H(z) (compiled by Meng et al. in 2015.); distance modulus of 580 Supernovae Type Ia (Union catalog Compilation 2.1, 2011); and the observations of baryon acoustic oscilations (BAO) and the cosmic microwave background (CMB) by using the so-called CMB/BAO of six peaks of BAO (a peak determined through the Survey 6dFGS data, two through the SDSS and three through WiggleZ). The statistical analysis used was the method of the χ2 minimum (marginalized or minimized over h whenever possible) to link the cosmological parameter: m, ω and δω0. These tests were applied in two parameterization of the parameter ω of the equation of state of dark energy, p = ωρ (here, p is the pressure and ρ is the component of energy density). In one, ω is considered constant and less than -1/3, known as XCDM model; in the other the parameter of state equantion varies with the redshift, where we the call model GS. This last model is based on arguments that arise from the theory of cosmological inflation. For comparison it was also made the analysis of model CDM. Comparison of cosmological models with different observations lead to different optimal settings. Thus, to classify the observational viability of different theoretical models we use two criteria information, the Bayesian information criterion (BIC) and the Akaike information criteria (AIC). The Fisher matrix tool was incorporated into our testing to provide us with the uncertainty of the parameters of each theoretical model. We found that the complementarity of tests is necessary inorder we do not have degenerate parametric spaces. Making the minimization process we found (68%), for the Model XCDM the best fit parameters are m = 0.28 ± 0, 012 and ωX = −1.01 ± 0, 052. While for Model GS the best settings are m = 0.28 ± 0, 011 and δω0 = 0.00 ± 0, 059. Performing a marginalization we found (68%), for the Model XCDM the best fit parameters are m = 0.28 ± 0, 012 and ωX = −1.01 ± 0, 052. While for Model GS the best settings are M = 0.28 ± 0, 011 and δω0 = 0.00 ± 0, 059.
Resumo:
Habitat selection behaviour is the primary way in which organisms are able to regulate encounters with their biotic and abiotic environment. An individual chooses an area that best meets their current needs, particularly regarding safety and the presence of high-quality food. Several physical aspects of the environment can make it difficult for individuals to assess the relative habitat quality of the areas available, thus leading to suboptimal habitat selection. In this thesis, I investigated the way in which two aquatic habitat constraints - obstacles to movement between patches and turbidity - affected the ability of fish to make optimal patch choices, using threespine stickleback Gasterosteus aculeatus as a model species. Laboratory experiments showed that when movement between patches was hindered by increasingly challenging obstacles, groups of stickleback did not move as freely between the patches, and thus had greater deviations from the predictions of the Ideal Free Distribution (IFD). I also demonstrated that, unlike other species, stickleback do not use turbid environments to avoid predator detection. A trend was seen towards avoidance of a turbid food patch regardless of risk level, although this was not statistically significant. As expected, the stickleback avoided feeding in the presence of a predator regardless of water clarity. Overall, I found that both turbidity and movement constraints can have significant impacts on patch use and distribution in the threespine stickleback. Both turbidity and ease of transit will impact the distribution of ecologically important species like the threespine stickleback, and therefore should be taken into account when studying habitat selection in the wild.
Resumo:
The spectral energy distributions (SED) of dusty galaxies at intermediate redshift may look similar to very high-redshift galaxies in the optical/near infrared (NIR) domain. This can lead to the contamination of high-redshift galaxy searches based on broad-band optical/NIR photometry by lower redshift dusty galaxies because both kind of galaxies cannot be distinguished. The contamination rate could be as high as 50%. This work shows how the far-infrared (FIR) domain can help to recognize likely low-z interlopers in an optical/NIR search for high-z galaxies. We analyze the FIR SEDs of two galaxies that are proposed to be very high-redshift (z > 7) dropout candidates based on deep Hawk-I/VLT observations. The FIR SEDs are sampled with PACS/Herschel at 100 and 160 μm, with SPIRE/Herschel at 250, 350 and 500 μm and with LABOCA/APEX at 870 μm. We find that redshifts > 7 would imply extreme FIR SEDs (with dust temperatures >100 K and FIR luminosities >10^13 L_⊙). At z ~ 2, instead, the SEDs of both sources would be compatible with those of typical ultra luminous infrared galaxies or submillimeter galaxies. Considering all available data for these sources from visible to FIR we re-estimate the redshifts and find z ~ 1.6–2.5. Owing to the strong spectral breaks observed in these galaxies, standard templates from the literature fail to reproduce the visible-to-near-IR part of the SEDs even when additional extinction is included. These sources strongly resemble dust-obscured galaxies selected in Spitzer observations with extreme visible-to-FIR colors, and the galaxy GN10 at z = 4. Galaxies with similar SEDs could contaminate other high-redshift surveys.
Resumo:
Major funding was provided by the UK Natural Environment Research Council (NERC) under grant NE/I028017/1 and partially supported by Boğaziçi University Research Fund (BAP) under grant 6922. We would like to thank all the project members from the University of Leeds, Boğaziçi University, Kandilli Observatory, Aberdeen University and Sakarya University. I would also like to thank Prof. Ali Pinar and Dr. Kıvanç Kekovalı for their valuable comments. Some of the figures were generated by GMT software (Wessel and Smith, 1995).
Resumo:
Major funding was provided by the UK Natural Environment Research Council (NERC) under grant NE/I028017/1 and partially supported by Boğaziçi University Research Fund (BAP) under grant 6922. We would like to thank all the project members from the University of Leeds, Boğaziçi University, Kandilli Observatory, Aberdeen University and Sakarya University. I would also like to thank Prof. Ali Pinar and Dr. Kıvanç Kekovalı for their valuable comments. Some of the figures were generated by GMT software (Wessel and Smith, 1995).
Resumo:
Acknowledgements Many parties contributed to making this paper a reality. This research was supported by the European Social and Research Council, grant ESRC ES/K006428/1. The author is particularly grateful to the grant’s holder, Professor David Anderson from the Department of Anthropology, University of Aberdeen, for his various support throughout this research. The Barents Center of the Humanities at Kola Science Center of the Russian Academy of Sciences in Apatity provided important institutional support. Officials from several fisheries management institutions of Arkhangelsk oblast, including Shiriaev Igor Alekseevich from Dvinsko-Pechorskoe Territorial Management Board, Skovorod’ko Artem Aleksandrovich from the Northern Basin Directorate of Fisheries and Water Biological Resources Conservation (Sevrybvod) and Korotenkov Aleksei Anatol’evich from the Fishing Industry Agency of Arkhangelsk oblast were very supportive and shared their knowledge wherever possible. Scholars Studenov Igor Ivanovich and Stasenkov Vladimir Aleksandrovich at Northern branch of the Knipovich Polar Research Institute of Marine Fisheries and Oceanography (SevPINRO) in Arkhangelsk provided their invaluable expertise on marine fisheries. Chairmen of several fishing collective farms – Tuchin Sergei Viktorovich, Samoilov Sergei Nikolaevich and Seliverstova Marina Nikolaevna – offered a great administrative support. Local residents of several villages in Mezen region were extremely generous and hospitable, providing places to stay, warm clothes, food, endless cups of tea, and most valuably, sparing their time. Finally, Natalie Wahnsiedler was a regular companion during fieldwork and a great source of inspiration for this research.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
From: Ventra, D. & Clarke, L. E. (eds) Geology and Geomorphology of Alluvial and Fluvial Fans: Terrestrial and Planetary Perspectives. Geological Society, London, Special Publications, 440, http://doi.org/10.1144/SP440.8 # 2016 The Author(s). Published by The Geological Society of London. All rights reserved
Resumo:
Ackowledgements: This work was funded by a European Research Council Starting Grant to JMR. All simulations were performed using the Maxwell computing cluster at the University of Aberdeen
Resumo:
Acknowledgements Many parties contributed to making this paper a reality. This research was supported by the European Social and Research Council, grant ESRC ES/K006428/1. The author is particularly grateful to the grant’s holder, Professor David Anderson from the Department of Anthropology, University of Aberdeen, for his various support throughout this research. The Barents Center of the Humanities at Kola Science Center of the Russian Academy of Sciences in Apatity provided important institutional support. Officials from several fisheries management institutions of Arkhangelsk oblast, including Shiriaev Igor Alekseevich from Dvinsko-Pechorskoe Territorial Management Board, Skovorod’ko Artem Aleksandrovich from the Northern Basin Directorate of Fisheries and Water Biological Resources Conservation (Sevrybvod) and Korotenkov Aleksei Anatol’evich from the Fishing Industry Agency of Arkhangelsk oblast were very supportive and shared their knowledge wherever possible. Scholars Studenov Igor Ivanovich and Stasenkov Vladimir Aleksandrovich at Northern branch of the Knipovich Polar Research Institute of Marine Fisheries and Oceanography (SevPINRO) in Arkhangelsk provided their invaluable expertise on marine fisheries. Chairmen of several fishing collective farms – Tuchin Sergei Viktorovich, Samoilov Sergei Nikolaevich and Seliverstova Marina Nikolaevna – offered a great administrative support. Local residents of several villages in Mezen region were extremely generous and hospitable, providing places to stay, warm clothes, food, endless cups of tea, and most valuably, sparing their time. Finally, Natalie Wahnsiedler was a regular companion during fieldwork and a great source of inspiration for this research.