888 resultados para Collective cell migration
Resumo:
Germ cells in the mouse embryo can develop as oocytes or spermatogonia, depending on molecular cues that have not been identified. We found that retinoic acid, produced by mesonephroi of both sexes, causes germ cells in the ovary to enter meiosis and inititate oogenesis. Meiosis is retarded in the fetal testis by the action of the retinoid-degrading enzyme CYP26B1, ultimately leading to spermatogenesis. In testes of Cyp26b1-knockout mouse embryos, germ cells enter meiosis precociously, as if in a normal ovary. Thus, precise regulation of retinoid levels during fetal gonad development provides the molecular control mechanism that specifies germ cell fate.
Resumo:
We have recently found that celiac disease patient serum-derived autoantibodies targeted against transglutaminase 2 interfere with several steps of angiogenesis, including endothelial sprouting and migration, though the mechanism involved remained to be fully characterized. This study now investigated the processes underlying the antiangiogenic effects exerted by celiac disease patient antibodies on endothelial cells, with particular regard to the adhesion, migration, and polarization signaling pathway. We observed that celiac IgA reduced endothelial cell numbers by affecting adhesion without increasing apoptosis. Endothelial cells in the presence of celiac IgA showed weak attachment, a high susceptibility to detach from fibronectin, and a disorganized extracellular matrix due to a reduction of protein cross-links. Furthermore, celiac patient IgA led to secretion of active transglutaminase 2 from endothelial cells into the culture supernatants. Additionally, cell surface transglutaminase 2 mediated integrin clustering in the presence of celiac IgA was coupled to augmented expression of ß1-integrin. We also observed that celiac patient IgA-treated endothelial cells had migratory defects and a less polarized phenotype when compared to control groups, and this was associated with the RhoA signaling pathway. These biological effects mediated by celiac IgA on endothelial cells were partially influenced but not completely abolished by R281, an irreversible extracellular transglutaminase 2 enzymatic activity inhibitor. Taken together, our results imply that celiac patient IgA antibodies disturb the extracellular protein cross-linking function of transglutaminase 2, thus altering cell-extracellular matrix interactions and thereby affecting endothelial cell adhesion, polarization, and motility. © 2013 Springer Basel.
Resumo:
The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel.
Resumo:
Mammalian placentation is dependent upon the action of trophoblast cells at the time of implantation. Appropriate fetal growth, regulated by maternal nutrition and nutrient transport across the placenta, is a critical factor for adult offspring long-term health. We have demonstrated that a mouse maternal low-protein diet (LPD) fed exclusively during preimplantation development (Emb-LPD) increases offspring growth but programmes adult cardiovascular and metabolic disease. In this study, we investigate the impact of maternal nutrition on post-implantation trophoblast phenotype and fetal growth. Ectoplacental cone explants were isolated at day 8 of gestation from female mice fed either normal protein diet (NPD: 18% casein), LPD (9% casein) or Emb-LPD and cultured in vitro. We observed enhanced spreading and cell division within proliferative and secondary trophoblast giant cells (TGCs) emerging from explants isolated from LPD-fed females when compared with NPD and Emb-LPD explants after 24 and 48 h. Moreover, both LPD and Emb-LPD explants showed substantial expansion of TGC area during 24-48 h, not observed in NPD. No difference in invasive capacity was observed between treatments using Matrigel transwell migration assays. At day 17 of gestation, LPD- and Emb-LPD-fed conceptuses displayed smaller placentas and larger fetuses respectively, resulting in increased fetal:placental ratios in both groups compared with NPD conceptuses. Analysis of placental and yolk sac nutrient signalling within the mammalian target of rapamycin complex 1 pathway revealed similar levels of total and phosphorylated downstream targets across groups. These data demonstrate that early post-implantation embryos modify trophoblast phenotype to regulate fetal growth under conditions of poor maternal nutrition.
Resumo:
Angiopoietin-1 (Ang-1) is an angiogenic growth factor that activates Tie-2 and integrins to promote vessel wall remodeling. The recent finding of the potential proatherogenic effects of Ang-1 prompted us to investigate whether Ang-1 promotes monocyte chemotaxis, endothelial binding, and transendothelial migration, key events in the progression of atherosclerosis. Here, we show that Ang-1 induces chemotaxis of monocytes in a manner that is independent of Tie-2 and integrin binding but dependent on phosphoinositide 3-kinase and heparin. In addition, Ang-1 promoted phosphoinositide 3-kinase-dependent binding of monocytes to endothelial monolayers and stimulated transendothelial migration. Fluorescence-activated cell sorting analysis showed that exogenous Ang-1 adheres directly to monocytes as well as to human umbilical endothelial cells, but neither Tie-2 mRNA nor protein were expressed by primary monocytes. Although Ang-1 binding to human umbilical endothelial cells was partially Tie-2 and integrin dependent, Ang-1 binding to monocytes was independent of these factors. Finally, preincubation of monocytes with soluble heparin abrogated Ang-1 binding to monocytes and migration, and partially prevented Ang-1 binding to human umbilical endothelial cells. In summary, Ang-1 induces chemotaxis of monocytes by a mechanism that is dependent on phosphoinositide 3-kinase and heparin but independent of Tie-2 and integrins. The ability of Ang-1 to recruit monocytes suggests it may play a role in inflammatory angiogenesis and may promote atherosclerosis.
Resumo:
The endothelium is the primary barrier to leukocyte recruitment at sites of inflammation. Neutrophil recruitment is directed by transendothelial gradients of IL-8 that, in vivo, are bound to the endothelial cell surface. We have investigated the identity and function of the binding site(s) in an in vitro model of neutrophil transendothelial migration. In endothelial culture supernatants, IL-8 was detected in a trimolecular complex with heparan sulfate and syndecan-1. Constitutive shedding of IL-8 in this form was increased in the presence of a neutralizing Ab to plasminogen activator inhibitor-1 (PAI-1), indicating a role for endothelial plasminogen activator in the shedding of IL-8. Increased shedding of IL-8/heparan sulfate/syndecan-1 complexes was accompanied by inhibition of neutrophil transendothelial migration, and aprotinin, a potent plasmin inhibitor, reversed this inhibition. Platelets, added as an exogenous source of PAI-1, had no effect on shedding of the complexes or neutrophil migration. Our results indicate that IL-8 is immobilized on the endothelial cell surface through binding to syndecan-1 ectodomains, and that plasmin, generated by endothelial plasminogen activator, induces the shedding of this form of IL-8. PAI-1 appears to stabilize the chemoattractant form of IL-8 at the cell surface and may represent a therapeutic target for novel anti-inflammatory strategies.
Resumo:
Naturally-occurring, endogenous electric fields (EFs) have been detected at skin wounds, damaged tissue sites and vasculature. Applied EFs guide migration of many types of cells, including endothelial cells to migrate directionally. Homing of endothelial progenitor cells (EPCs) to an injury site is important for repair of vasculature and also for angiogenesis. However, it has not been reported whether EPCs respond to applied EFs. Aiming to explore the possibility to use electric stimulation to regulate the progenitor cells and angiogenesis, we tested the effects of direct-current (DC) EFs on EPCs. We first used immunofluorescence to confirm the expression of endothelial progenitor markers in three lines of EPCs. We then cultured the progenitor cells in EFs. Using time-lapse video microscopy, we demonstrated that an applied DC EF directs migration of the EPCs toward the cathode. The progenitor cells also align and elongate in an EF. Inhibition of vascular endothelial growth factor (VEGF) receptor signaling completely abolished the EF-induced directional migration of the progenitor cells. We conclude that EFs are an effective signal that guides EPC migration through VEGF receptor signaling in vitro. Applied EFs may be used to control behaviors of EPCs in tissue engineering, in homing of EPCs to wounds and to an injury site in the vasculature.
Resumo:
Damaged, aged or unwanted cells are removed from the body by an active process known as apoptosis. This highly orchestrated programme results in the exposure of 'flags' at the dying cell surface and the release of attractive signals to recruit phagocytes. Together these changes ensure efficient phagocytic removal of dying cells and prevention of inflammatory and autoimmune disorders. Extracellular vesicles (EV) are released from a variety of cells (both viable and apoptotic) and they serve as a novel means of intercellular communication. They range in size: 70-100nm ('exosomes') through 100-1000nm ('microparticles') to large vesicles released from dying cells ('apoptotic bodies'). Release of apoptotic cell-derived extracellular vesicles (acdEV) of less than 1000nm is an important mechanism by which phagocytes are attracted to sites of cell death. Using a variety of approaches we characterize the release, physical characteristics and function of acdEV. Using fluorescence microscopy we demonstrate release of ICAM-3 on acdEV from dying leukocytes and, through the use of resistive pulse technology (qNano, IZON Science), we accurately size and quantitate acdEV release. The function of acdEV is revealed through the use of both horizontal chemotaxis assays (Dunn chambers) and vertical transwell migration assays (Cell-IQ, CM Technologies). These assays reveal potent chemoattractive capacity of acdEV and associated ICAM-3. Additionally we demonstrate an additional novel function of acdEV as anti-inflammatory immune-modulators. These data support an integrated approach to the physical and functional analyses of EV.
Resumo:
A key dividing line in the literature on post-national citizenship concerns the role of collective identity. While some hold that a post-national form of identity is desirable in developing citizenship in contexts such as the European Union (EU), others question the defensibility of a collective identity at this supra-national level. The aim of this article is to intervene in this debate, drawing on qualitative research to consider the extent to which post-national citizenship should be accompanied by a form of post-national identity. The article takes the UK as a case study, and explores tensions between the immigration policies and rhetoric of the Coalition Government since 2010 and the post-national citizenship rights of EU citizens migrating into British local communities. It draws on independently collected qualitative data from the county of Herefordshire, UK, to argue that the persistent reinforcement of national identity reproduces national lines of difference which further problematise the full realisation of European citizenship. At a theoretical level, this highlights the need for the development of post-national citizenship rights to be accompanied by a paradigmatic shift in the way that collective identity is constituted in post-national contexts.
Resumo:
Dictyostelium discoideum is a simple model widely used to study many cellular functions, including differentiation, gene regulation, cellular trafficking and directional migration. Adaptation mechanisms are essential in the regulation of these cellular processes. The misregulation of adaptation components often results in persistent activation of signaling pathways and aberrant cellular responses. Studying adaptation mechanisms regulating cellular migration will be crucial in the treatment of many pathological conditions in which motility plays a central role, such as tumor metastasis and acute inflammation. I will describe two adaptation mechanisms regulating directional migration in Dictyostelium cells. The Extracellular signal Regulated Kinase 2 (ERK2) plays an essential role in Dictyostelium cellular migration. ERK2 stimulates intracellular cAMP accumulation in chemotaxing cells. Aberrant ERK2 regulation results in aberrant cAMP levels and defective directional migration. The MAP Phosphatase with Leucine-rich repeats (MPL1) is crucial for ERK2 adaptation. Cells lacking, MPL1 (mpl1- cells) displayed higher pre-stimulus and persistent post-stimulus ERK2 phosphorylation, defective cAMP production and reduced cellular migration. Reintroduction of a full length Mpl1 into mpl1- cells restored aggregation, ERK2 regulation, random and directional motility, and cAMP production similar to wild type cells (Wt). These results suggest Mpl1 is essential for proper regulation of ERK2 phosphorylation and optimal motility in Dictyostelium cells. Cellular polarization in Dictyostelium cells in part is regulated by the activation of the AGC-related kinase Protein Kinase Related B1 (PKBR1). The PP2A regulatory subunit, B56, and the Glycogen Synthase Kinase 3 (GSK3) are necessary for PKBR1 adaptation in Dictyostelium cells. Cells lacking B56, psrA-cells, exhibited high basal and post-stimulus persistent phosphorylation of PKBR1, increased phosphorylation of PKBR1 substrates, and aberrant motility. PKBR1 adaptation is also regulated by the GSK3. When the levels of active GSK3 are reduced in Wt and psrA- cells, high basal levels of phosphorylated PKBR1 were observed, in a Ras dependent, but B56 independent mechanism. Altogether, PKBR1 adaptation is regulated by at least two independent mechanisms: one by GSK3 and another by PP2A/B56.
Resumo:
Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a ultra-high dose rate comparing them with standard dose rate. In this regard, a radioresistant SK-MEL-28 cell line were irradiated with x-ray in order to have a total dose of 2 and 4 Gy, at two different dose rate. The ultra-high dose rate is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles, in this case, we focused our study on the influence of X-rays. While a low dose rate is obtained with conventional X-ray tube. In this study it results that a ultra-high dose rate enhances radiosensitivity of melanoma cells while reducing the adhesion, proliferation and migration ability of cells.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
A zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under homeostatic conditions, mutant macrophages accumulate undigested lysosomal material, which disrupts endocytic recycling and impairs their migration to, and thus engulfment of, dying cells. This causes a buildup of unengulfed cell debris. During mycobacterial infection, macrophages with lysosomal storage cannot migrate toward infected macrophages undergoing apoptosis in the tuberculous granuloma. The unengulfed apoptotic macrophages undergo secondary necrosis, causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal storage similarly impairs migration to newly infecting mycobacteria. This phenotype is recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of their alveolar macrophages exhibit lysosomal accumulations of tobacco smoke particulates and do not migrate to Mycobacterium tuberculosis. The incapacitation of highly microbicidal first-responding macrophages may contribute to smokers' susceptibility to tuberculosis.
Resumo:
In different types of myeloid leukemia, increased formation of reactive oxygen species (ROS) has been noted and associated with aspects of cell transformation including the promotion of leukemic cell proliferation and migration, as well as DNA-damage and accumulation of mutations. Work reviewed in this article has shown the involvement of NADPH oxidase (NOX)-derived ROS downstream of oncogenic protein-tyrosine kinases in both processes, and the related pathways have been partially identified. FLT3-ITD, an important oncoprotein in a subset of AML, causes activation of AKT and subsequently stabilization of p22phox, a regulatory subunit for NOX1-4. This process is linked to ROS formation and DNA damage. Moreover, FLT3-ITD signaling through STAT5 enhances expression of NOX4, ROS formation and inactivation of the protein-tyrosine phosphatase DEP-1/PTPRJ, a negative regulator of FLT3 signaling, by reversible oxidation of its catalytic cysteine residue. Genetic inactivation of NOX4 restored DEP-1 activity and attenuated cell transformation by FLT3-ITD in vitro and in vivo. Future work is required to further explore these mechanisms and their causal involvement in leukemic cell transformation, which may result in the identification of novel candidate targets for therapy.
Resumo:
BACKGROUND: The role of the microbiome has become synonymous with human health and disease. Bile acids, as essential components of the microbiome, have gained sustained credibility as potential modulators of cancer progression in several disease models. At physiological concentrations, bile acids appear to influence cancer phenotypes, although conflicting data surrounds their precise physiological mechanism of action. Previously, we demonstrated bile acids destabilised the HIF-1α subunit of the Hypoxic-Inducible Factor-1 (HIF-1) transcription factor. HIF-1 overexpression is an early biomarker of tumour metastasis and is associated with tumour resistance to conventional therapies, and poor prognosis in a range of different cancers. METHODS: Here we investigated the effects of bile acids on the cancer growth and migratory potential of cell lines where HIF-1α is known to be active under hypoxic conditions. HIF-1α status was investigated in A-549 lung, DU-145 prostate and MCF-7 breast cancer cell lines exposed to bile acids (CDCA and DCA). Cell adhesion, invasion, migration was assessed in DU-145 cells while clonogenic growth was assessed in all cell lines. RESULTS: Intracellular HIF-1α was destabilised in the presence of bile acids in all cell lines tested. Bile acids were not cytotoxic but exhibited greatly reduced clonogenic potential in two out of three cell lines. In the migratory prostate cancer cell line DU-145, bile acids impaired cell adhesion, migration and invasion. CDCA and DCA destabilised HIF-1α in all cells and significantly suppressed key cancer progression associated phenotypes; clonogenic growth, invasion and migration in DU-145 cells. CONCLUSIONS: These findings suggest previously unobserved roles for bile acids as physiologically relevant molecules targeting hypoxic tumour progression.