1000 resultados para Code validation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The safe use of nuclear power plants (NPPs) requires a deep understanding of the functioning of physical processes and systems involved. Studies on thermal hydraulics have been carried out in various separate effects and integral test facilities at Lappeenranta University of Technology (LUT) either to ensure the functioning of safety systems of light water reactors (LWR) or to produce validation data for the computer codes used in safety analyses of NPPs. Several examples of safety studies on thermal hydraulics of the nuclear power plants are discussed. Studies are related to the physical phenomena existing in different processes in NPPs, such as rewetting of the fuel rods, emergency core cooling (ECC), natural circulation, small break loss-of-coolant accidents (SBLOCA), non-condensable gas release and transport, and passive safety systems. Studies on both VVER and advanced light water reactor (ALWR) systems are included. The set of cases include separate effects tests for understanding and modeling a single physical phenomenon, separate effects tests to study the behavior of a NPP component or a single system, and integral tests to study the behavior of the whole system. In the studies following steps can be found, not necessarily in the same study. Experimental studies as such have provided solutions to existing design problems. Experimental data have been created to validate a single model in a computer code. Validated models are used in various transient analyses of scaled facilities or NPPs. Integral test data are used to validate the computer codes as whole, to see how the implemented models work together in a code. In the final stage test results from the facilities are transferred to the NPP scale using computer codes. Some of the experiments have confirmed the expected behavior of the system or procedure to be studied; in some experiments there have been certain unexpected phenomena that have caused changes to the original design to avoid the recognized problems. This is the main motivation for experimental studies on thermal hydraulics of the NPP safety systems. Naturally the behavior of the new system designs have to be checked with experiments, but also the existing designs, if they are applied in the conditions that differ from what they were originally designed for. New procedures for existing reactors and new safety related systems have been developed for new nuclear power plant concepts. New experiments have been continuously needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: To validate a model for quantifying the prognosis of patients with pulmonary embolism (PE). The model was previously derived from 10 534 US patients. METHODS AND RESULTS: We validated the model in 367 patients prospectively diagnosed with PE at 117 European emergency departments. We used baseline data for the model's 11 prognostic variables to stratify patients into five risk classes (I-V). We compared 90-day mortality within each risk class and the area under the receiver operating characteristic curve between the validation and the original derivation samples. We also assessed the rate of recurrent venous thrombo-embolism and major bleeding within each risk class. Mortality was 0% in Risk Class I, 1.0% in Class II, 3.1% in Class III, 10.4% in Class IV, and 24.4% in Class V and did not differ between the validation and the original derivation samples. The area under the curve was larger in the validation sample (0.87 vs. 0.78, P=0.01). No patients in Classes I and II developed recurrent thrombo-embolism or major bleeding. CONCLUSION: The model accurately stratifies patients with PE into categories of increasing risk of mortality and other relevant complications. Patients in Risk Classes I and II are at low risk of adverse outcomes and are potential candidates for outpatient treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The psychometric properties of the EORTC QLQ-BN20, a brain cancer-specific HRQOL questionnaire, have been previously determined in an English-speaking sample of patients. This study examined the validity and reliability of the questionnaire in a multi-national, multi-lingual study. Methods: QLQ-BN20 data were selected from two completed phase III EORTC/NCIC clinical trials in brain cancer (N=891), including 12 languages. Experimental treatments were surgery followed by radiotherapy (RT) and adjuvant PCV chemotherapy or surgery followed by concomitant RT plus temozolomide (TMZ) chemotherapy and adjuvant TMZ chemotherapy. Standard treatment consisted of surgery and postoperative RT alone. The psychometrics of the QLQ-BN20 were examined by means of multi-trait scaling analyses, reliability estimation, known groups validity testing, and responsiveness analysis. Results: All QLQ-BN20 items correlated more strongly with their own scale (r>0.70) than with other QLQ-BN20 scales. Internal consistency reliability coefficients were high (all alpha0.70). Known-groups comparisons yielded positive results, with the QLQ-BN20 distinguishing between patients with differing levels of performance status and mental functioning. Responsiveness of the questionnaire to changes over time was acceptable. Conclusion: The QLQ-BN20 demonstrates adequate psychometric properties and can be recommended for use in conjunction with the QLQ-C30 in assessing the HRQOL of brain cancer patients in international studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Knowledge of cerebral blood flow (CBF) alterations in cases of acute stroke could be valuable in the early management of these cases. Among imaging techniques affording evaluation of cerebral perfusion, perfusion CT studies involve sequential acquisition of cerebral CT sections obtained in an axial mode during the IV administration of iodinated contrast material. They are thus very easy to perform in emergency settings. Perfusion CT values of CBF have proved to be accurate in animals, and perfusion CT affords plausible values in humans. The purpose of this study was to validate perfusion CT studies of CBF by comparison with the results provided by stable xenon CT, which have been reported to be accurate, and to evaluate acquisition and processing modalities of CT data, notably the possible deconvolution methods and the selection of the reference artery. METHODS: Twelve stable xenon CT and perfusion CT cerebral examinations were performed within an interval of a few minutes in patients with various cerebrovascular diseases. CBF maps were obtained from perfusion CT data by deconvolution using singular value decomposition and least mean square methods. The CBF were compared with the stable xenon CT results in multiple regions of interest through linear regression analysis and bilateral t tests for matched variables. RESULTS: Linear regression analysis showed good correlation between perfusion CT and stable xenon CT CBF values (singular value decomposition method: R(2) = 0.79, slope = 0.87; least mean square method: R(2) = 0.67, slope = 0.83). Bilateral t tests for matched variables did not identify a significant difference between the two imaging methods (P >.1). Both deconvolution methods were equivalent (P >.1). The choice of the reference artery is a major concern and has a strong influence on the final perfusion CT CBF map. CONCLUSION: Perfusion CT studies of CBF achieved with adequate acquisition parameters and processing lead to accurate and reliable results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3G-radioverkon asetusten hallinnointi suoritetaan säätämällä radioverkkotietokantaan talletettavia parametreja. Hallinnointiohjelmistossa tuhannetradioverkon parametrit näkyvät käyttöliittymäkomponentteina, joita ohjelmiston kehityskaaressa jatkuvasti lisätään, muutetaan ja poistetaan asiakkaan tarpeidenmukaan. Parametrien lisäämisen toteutusprosessi on ohjelmistokehittäjälle työlästä ja mekaanista. Diplomityön tavoitteeksi asetettiin kehittää koodigeneraattori, joka luo kaiken toteutusprosessissa tuotetun koodin automaattisesti niistä määrittelyistä, jotka ovat nykyäänkin saatavilla. Työssä kehitetty generaattori nopeuttaa ohjelmoijan työtä eliminoimalla yhden aikaa vievän ja mekaanisen työvaiheen. Seurauksena saadaan yhtenäisempää ohjelmistokoodia ja säästetään yrityksen ohjelmistotuotannon kuluissa, kun ohjelmoijan taito voidaan keskittää vaativimpiin tehtäviin.