993 resultados para Chemotaxis signal transduction
Resumo:
We previously reported that pancreatic islet beta-cells from GLUT2-null mice lost the first phase but preserved the second phase of glucose-stimulated insulin secretion (GSIS). Furthermore, we showed that the remaining secretory activity required glucose uptake and metabolism because it can be blocked by inhibition of oxidative phosphorylation. Here, we extend these previous studies by analyzing, in GLUT2-null islets, glucose transporter isoforms and glucokinase expression and by measuring glucose usage, GSIS, and glucose-stimulated insulin mRNA biosynthesis. We show that in the absence of GLUT2, no compensatory expression of either GLUT1 or GLUT3 is observed and that glucokinase is expressed at normal levels. Glucose usage by isolated islets was increased between 1 and 6 mmol/l glucose but was not further increased between 6 and 20 mmol/l glucose. Parallel GSIS measurements showed that insulin secretion was not stimulated between 2.8 and 6 mmol/l glucose but was increased by >4-fold between 6 and 20 mmol/l glucose. Stimulation by glucose of total protein and insulin biosynthesis was also markedly impaired in the absence of GLUT2. Finally, we re-expressed GLUT2 in GLUT2-null beta-cells using recombinant lentiviruses and demonstrated a restoration of normal GSIS. Together, these data show that in the absence of GLUT2, glucose can still be taken up by beta-cells, albeit at a low rate, and that this transport activity is unlikely to be attributed to GLUT1 or GLUT3. This uptake activity, however, is limiting for normal glucose utilization and signaling to secretion and translation. These data further demonstrate the key role of GLUT2 in murine beta-cells for glucose signaling to insulin secretion and biosynthesis.
Resumo:
BACKGROUND: The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. Moreover, skin specific loss of Notch signaling in the embryo results in skin barrier defects accompanied by a B-lymphoproliferative disease. However, much less is known about the consequences of loss of Notch signaling after birth. METHODOLOGY AND PRINCIPAL FINDINGS: To study the function of Notch signaling in the skin of adult mice, we made use of a series of conditional gene targeted mice that allow inactivation of several components of the Notch signaling pathway specifically in the skin. We demonstrate that skin-specific inactivation of Notch1 and Notch2 simultaneously, or RBP-J, induces the development of a severe form of atopic dermatitis (AD), characterized by acanthosis, spongiosis and hyperkeratosis, as well as a massive dermal infiltration of eosinophils and mast cells. Likewise, patients suffering from AD, but not psoriasis or lichen planus, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes induces the production of thymic stromal lymphopoietin (TSLP), a cytokine deeply implicated in the pathogenesis of AD. The AD-like associated inflammation is accompanied by a myeloproliferative disorder (MPD) characterized by an increase in immature myeloid populations in the bone marrow and spleen. Transplantation studies revealed that the MPD is cell non-autonomous and caused by dramatic microenvironmental alterations. Genetic studies demontrated that G-CSF mediates the MPD as well as changes in the bone marrow microenvironment leading to osteopenia. SIGNIFICANCE: Our data demonstrate a critical role for Notch in repressing TSLP production in keratinocytes, thereby maintaining integrity of the skin and the hematopoietic system.
Resumo:
Myc activity is emerging as a key element in acquisition and maintenance of stem cell properties. We have previously shown that c-Myc deficiency results in accumulation of defective hematopoietic stem cells (HSCs) due to niche-dependent differentiation defects. Here we report that immature HSCs coexpress c-myc and N-myc mRNA at similar levels. Although conditional deletion of N-myc in the bone marrow does not affect hematopoiesis, combined deficiency of c-Myc and N-Myc (dKO) results in pancytopenia and rapid lethality. Interestingly, proliferation of HSCs depends on both myc genes during homeostasis, but is c-Myc/N-Myc independent during bone marrow repair after injury. Strikingly, while most dKO hematopoietic cells undergo apoptosis, only self-renewing HSCs accumulate the cytotoxic molecule Granzyme B, normally employed by the innate immune system, thereby revealing an unexpected mechanism of stem cell apoptosis. Collectively, Myc activity (c-Myc and N-Myc) controls crucial aspects of HSC function including proliferation, differentiation, and survival.
Resumo:
The role of Notch signaling in growth/differentiation control of mammalian epithelial cells is still poorly defined. We show that keratinocyte-specific deletion of the Notch1 gene results in marked epidermal hyperplasia and deregulated expression of multiple differentiation markers. In differentiating primary keratinocytes in vitro endogenous Notch1 is required for induction of p21WAF1/Cip1 expression, and activated Notch1 causes growth suppression by inducing p21WAF1/Cip1 expression. Activated Notch1 also induces expression of 'early' differentiation markers, while suppressing the late markers. Induction of p21WAF1/Cip1 expression and early differentiation markers occur through two different mechanisms. The RBP-Jkappa protein binds directly to the endogenous p21 promoter and p21 expression is induced specifically by activated Notch1 through RBP-Jkappa-dependent transcription. Expression of early differentiation markers is RBP-Jkappa-independent and can be induced by both activated Notch1 and Notch2, as well as the highly conserved ankyrin repeat domain of the Notch1 cytoplasmic region. Thus, Notch signaling triggers two distinct pathways leading to keratinocyte growth arrest and differentiation.
Resumo:
It is currently unclear whether tissue changes surrounding multifocal epithelial tumors are a cause or consequence of cancer. Here, we provide evidence that loss of mesenchymal Notch/CSL signaling causes tissue alterations, including stromal atrophy and inflammation, which precede and are potent triggers for epithelial tumors. Mice carrying a mesenchymal-specific deletion of CSL/RBP-Jκ, a key Notch effector, exhibit spontaneous multifocal keratinocyte tumors that develop after dermal atrophy and inflammation. CSL-deficient dermal fibroblasts promote increased tumor cell proliferation through upregulation of c-Jun and c-Fos expression and consequently higher levels of diffusible growth factors, inflammatory cytokines, and matrix-remodeling enzymes. In human skin samples, stromal fields adjacent to multifocal premalignant actinic keratosis lesions exhibit decreased Notch/CSL signaling and associated molecular changes. Importantly, these changes in gene expression are also induced by UVA, a known environmental cause of cutaneous field cancerization and skin cancer.
Resumo:
Jagged1-mediated Notch signaling has been suggested to be critically involved in hematopoietic stem cell (HSC) self-renewal. Unexpectedly, we report here that inducible Cre-loxP-mediated inactivation of the Jagged1 gene in bone marrow progenitors and/or bone marrow (BM) stromal cells does not impair HSC self-renewal or differentiation in all blood lineages. Mice with simultaneous inactivation of Jagged1 and Notch1 in the BM compartment survived normally following a 5FU-based in vivo challenge. In addition, Notch1-deficient HSCs were able to reconstitute mice with inactivated Jagged1 in the BM stroma even under competitive conditions. In contrast to earlier reports, these data exclude an essential role for Jagged1-mediated Notch signaling during hematopoiesis.
Resumo:
We have studied the role of the T cell receptor (TCR) beta chain transmembrane and cytoplasmic domains (betaTM/Cyto) in T cell signaling. Upon antigen stimulation, T lymphocytes expressing a TCR with mutant and betaTM and Cyto domains accumulate in large numbers and are specifically defective in undergoing activation-induced cell death (AICD). The mutant TCR poorly recruits the protein adaptor Carma-1 and is subsequently impaired in activating NF-kappaB. This signaling defect leads to a reduced expression of Fas ligand (FasL) and to a reduction in AICD. These beta chain domains are involved in discriminating cell division and apoptosis.
Resumo:
The phytochrome family of photoreceptors (there are five phytochromes in Arabidopsis, named phyA to phyE) maximally absorbs red and far-red light and plays important functions throughout the life cycle of plants. Several recent studies have shown that multiple related bHLH (basic helix-loop-helix) class transcription factors play key roles in phytochrome signal transduction. Somewhat surprisingly these transcription factors primarily act as negative regulators of phytochrome signalling. Moreover, in some cases, the phytochromes inhibit those negative regulators.
Resumo:
Williams-Beuren syndrome (WBS) is a neurodevelopmental and multisystemic disease that results from hemizygosity of approximately 25 genes mapping to chromosomal region 7q11.23. We report here the preliminary description of eight novel genes mapping within the WBS critical region and/or its syntenic mouse region. Three of these genes, TRIM50, TRIM73 and TRIM74, belong to the TRIpartite motif gene family, members of which were shown to be associated to several human genetic diseases. We describe the preliminary functional characterization of these genes and show that Trim50 encodes an E3 ubiquitin ligase, opening the interesting hypothesis that the ubiquitin-mediated proteasome pathway might be involved in the WBS phenotype.
Resumo:
Transcript patterns elicited in response to attack reveal, at the molecular level, how plants respond to aggressors. These patterns are fashioned both by inflicted physical damage as well as by biological components displayed or released by the attacker. Different types of attacking organisms might therefore be expected to elicit different transcription programs in the host. Using a large-scale DNA microarray, we characterized gene expression in damaged as well as in distal Arabidopsis thaliana leaves in response to the specialist insect, Pieris rapae. More than 100 insect-responsive genes potentially involved in defense were identified, including genes involved in pathogenesis, indole glucosinolate metabolism, detoxification and cell survival, and signal transduction. Of these 114 genes, 111 were induced in Pieris feeding, and only three were repressed. Expression patterns in distal leaves were markedly similar to those of local leaves. Analysis of wild-type and jasmonate mutant plants, coupled with jasmonate treatment, showed that between 67 and 84% of Pieris-regulated gene expression was controlled, totally or in part, by the jasmonate pathway. This was correlated with increased larval performance on the coronatine insensitive1 glabrous1 (coi1-1 gl1) mutant. Independent mutations in COI1 and GL1 led to a faster larval weight gain, but the gl1 mutation had relatively little effect on the expression of the insect-responsive genes examined. Finally, we compared transcript patterns in Arabidopis in response to larvae of the specialist P. rapae and to a generalist insect, Spodoptera littoralis. Surprisingly, given the complex nature of insect salivary components and reported differences between species, almost identical transcript profiles were observed. This study also provides a robustly characterized gene set for the further investigation of plant-insect interaction.
Resumo:
Embryonic cells are expected to possess high growth/differentiation potential, required for organ morphogenesis and expansion during development. However, little is known about the intrinsic properties of embryonic epithelial cells due to difficulties in their isolation and cultivation. We report here that pure keratinocyte populations from E15.5 mouse embryos commit irreversibly to differentiation much earlier than newborn cells. Notch signaling, which promotes keratinocyte differentiation, is upregulated in embryonic keratinocyte and epidermis, and elevated caspase 3 expression, which we identify as a transcriptional Notch1 target, accounts in part for the high commitment of embryonic keratinocytes to terminal differentiation. In vivo, lack of caspase 3 results in increased proliferation and decreased differentiation of interfollicular embryonic keratinocytes, together with decreased activation of PKC-delta, a caspase 3 substrate which functions as a positive regulator of keratinocyte differentiation. Thus, a Notch1-caspase 3 regulatory mechanism underlies the intrinsically high commitment of embryonic keratinocytes to terminal differentiation.
Resumo:
The Wnt -Wingless (Wg) in Drosophila- signaling is an evolutionary conserved, fundamental signal transduction pathway in animals, having a crucial role in early developmental processes. In the adult animal the Wnt cascade is mainly shut off; aberrant activation leads to cancer. One physiological exception in the adult animal is the activation of Wnt signaling in the nervous system. In the present work, we investigated Wg signaling in the Drosophila neuromuscular junctions (NMJs). The fly NMJs closely resemble the glutamatergic synapses in the mammalian central nervous system and serves as a model system to investigate the mechanism of synapse formation and stability. We demonstrate that the trimeric G-protein Go has a fundamental role in the presynaptic cell in the NMJ. It is implicated in the presynaptic Wg pathway, acting downstream of the ligand Wg and its receptor Frizzled2 (Fz2). Furthermore, we prove that the presynaptic Wg-Fz2-Gαo pathway is essential for correct NMJ formation. The neuronal protein Ankyrin2 (Ank2) localizes to the NMJ and has so far been considered to be a static player in NMJ formation, linking the plasma membrane to the cytoskeleton. We identify Ank2 as a direct target of Gαo. The physical and genetic interaction of Gαo with Ank2 represents a novel branch of the presynaptic Wg pathway, regulating the microtubule cytoskeleton in NMJ formation, jointly with the previously established Futsch-dependent branch, which controls microtubule stability downstream of the kinase Sgg (the homolog of GSK3ß). We moreover demonstrate that the Gαo-Ankyrin interaction to regulate the cytoskeleton is conserved in mammalian neuronal cells. Our findings therefore provide a novel, universally valid regulation of the cytoskeleton in the nervous system. Aberrant inactivation of the neuronal Wnt pathway is believed to be involved in the pathogenesis of the Aß peptide in Alzheimer's disease (AD). We modeled AD in Drosophila by expressing Aß42 in the nervous system and in the eye. Neuronal expression drastically shortens the life span of the flies. We prove that this effect depends on the expression specifically in glutamatergic neurons. However, Aß42 does not induce any morphological changes in the NMJ; therefore this synapse is not suitable to study the mechanism of Aß42 induced neurotoxicity. We furthermore demonstrate that genetic activation of the Wnt pathway does not rescue the Aß42 induced phenotypes - in opposition to the dominating view in the field. These results advice caution when interpreting data on the potential interaction of Wnt signaling and AD in other models. -- La voie de signalisation Wnt (Wingless (Wg) chez la drosophile) est conservée dans l'évolution et fondamentale pour le développement des animaux. Cette signalisation est normalement inactive chez l'animal adulte; une activation anormale peut provoquer le cancer. Or, ceci n'est pas le cas dans le système nerveux des adultes. La présente thèse avait pour but d'analyser le rôle de la voie de signalisation Wingless dans la plaque motrice de Drosophila melanogaster. En effet, cette plaque ressemble fortement aux synapses glutaminergiques du système nerveux central des mammifères et procure ainsi un bon modèle pour l'étude des mécanismes impliqués dans la formation et la stabilisation des synapses. Nos résultats montrent que la protéine trimérique Go joue un rôle fondamental dans la fonction de la cellule présynaptique de la plaque motrice. Go est en effet impliqué dans la voie de signalisation Wg, opérant en aval du ligand Wg et de son récepteur Frizzled2. Nous avons pu démontrer que cette voie de signalisation Wg-Fz2-Gαo est essentielle pour le bon développement et le fonctionnement de la plaque motrice. Fait intéressant, nous avons montré que la protéine neuronale Ankyrin2 (Ank2), qui est connue pour jouer un rôle statique en liant la membrane plasmique au cytosquelette dans la plaque motrice, est une cible directe de Gαo. L'interaction physique et génétique entre Gαo et Ank2 constitue ainsi une bifurcation de la voie de signalisation présynaptique Wg. Cette voie régule le cytosquelette des microtubules en coopération avec la branche liée à la protéine Futsch. Cette protéine est l'homologue de la protéine liant les microtubules MAP1B des mammifères et contrôle la stabilité des microtubules opérant en aval de la kinase Sgg (l'homologue de GSK3ß). De plus, la régulation du cytosquelette par l'interaction entre Gαo et Ankyrin est conservée chez les mammifères. Dans leur ensemble, nos résultats ont permis d'identifier un nouveau mode de régulation du cytosquelette dans le système nerveux, probablement valable de manière universelle. La voie de signalisation Wnt est soupçonnée d'être impliquée dans la toxicité provoquée par le peptide Aß dans le cadre de la maladie d'Alzheimer. Nous avons tenté de modéliser la maladie chez la drosophile en exprimant Aß42 spécifiquement dans le cerveau. Cette expérience a montré que l'expression neuronale d'Aß42 réduit la durée de vie des mouches de manière significative par un mécanisme impliquant les cellules glutamatergiques. Par contre, aucune modification morphologique n'est provoquée par Aß42 dans les plaques motrices glutamatergiques. Ces résultats montrent que ce modèle de Drosophile n'est pas adéquat pour l'étude de la maladie d'Alzheimer. De plus, l'activation génétique de la voie de signalisation Wg n'a pas réussi à restaurer les phénotypes de survie ou ceux des yeux causés par Aß42. Ces résultats indiquent que l'implication de la voie de signalisation Wg dans la maladie d'Alzheimer doit être considérée avec prudence.
Resumo:
Homeostasis of T cells can be defined as the ability of the immune system to maintain normal T-cell counts and to restore T-cell numbers following T-cell depletion or expansion. These processes are governed by extrinsic signals, most notably cytokines. Two members of the common gamma chain family of cytokines, interleukin (IL)-7 and IL-15, are central to homeostatic proliferation and survival of mature CD4(+) and CD8(+) T cells. Recent evidence suggests that other cytokines, including IL-2, IL-10, IL-12, interferons and TGF-beta, as well as the transcription factors T-bet and eomesodermin all play important but different roles at distinct stages of T-cell homeostasis.
Resumo:
Bystander activation of T cells, i.e. the stimulation of unrelated (heterologous) T cells by cytokines during an Ag-specific T-cell response, has been best described for CD8(+) T cells. In the CD8(+) compartment, the release of IFN and IFN-inducers leads to the production of IL-15, which mediates the proliferation of CD8(+) T cells, notably memory-phenotype CD8(+) T cells. CD4(+) T cells also undergo bystander activation, however, the signals inducing this Ag-nonspecific stimulation of CD4(+) T cells are less well known. A study in this issue of the European Journal of Immunology sheds light on this aspect, suggesting that common gamma-chain cytokines including IL-2 might be involved in bystander activation of CD4(+) T cells.
Resumo:
The PHO1 family comprises 11 members in Arabidopsis thaliana. In order to decipher the role of these genes in inorganic phosphate (Pi) transport and homeostasis, complementation of the pho1 mutant, deficient in loading Pi to the root xylem, was determined by the expression of the PHO1 homologous genes under the control of the PHO1 promoter. Only PHO1 and the homologue PHO1;H1 could complement pho1. The PHO1;H1 promoter was active in the vascular cylinder of roots and shoots. Expression of PHO1;H1 was very low in Pi-sufficient plants, but was strongly induced under Pi-deficient conditions. T-DNA knock-out mutants of PHO1;H1 neither showed growth defects nor alteration in Pi transport dynamics, or Pi content, compared with wild type. However, the double mutant pho1/pho1;h1 showed a strong reduction in growth and in the capacity to transfer Pi from the root to the shoot compared with pho1. Grafting experiments revealed that phenotypes associated with the pho1 and pho1/pho1;h1 mutants were linked to the lack of gene expression in the root. The increased expression of PHO1;H1 under Pi deficiency was largely controlled by the transcription factor PHR1 and was suppressed by the phosphate analogue phosphite, whereas the increase of PHO1 expression was independent of PHR1 and was not influenced by phosphite. Together, these data reveal that although transfer of Pi to the root xylem vessel is primarily mediated by PHO1, the homologue PHO1;H1 also contributes to Pi loading to the xylem, and that the two corresponding genes are regulated by Pi deficiency by distinct signal transduction pathways.