979 resultados para Cheese Microbiology
Resumo:
A microplate assay was modified for the detection of antimicrobial activity in plant extracts. The aim was to develop an in vitro assay that could rapidly screen plant extracts to provide quantitative data on inhibition of microbial growth. A spectrophotometric assay using a microplate with serial dilutions of the plant extract and the bacteria was developed. Two bacteria, Staphylococcus aureus and Escherichia coli, were used for this study. Essential oils, oregano (Origanum vulgare) and lemon myrtle (Backhousia citriodora), and three active components carvacrol, thymol and citral were evaluated. The reproducibility of the assay was high, with correlation coefficients (r aureus and E. coli between 0.9321 and 0.9816. Similarly, r and 0.9814. This assay could also be used to measure antimicrobial activity in plant extracts which vary in pH and color.
Resumo:
A rapid and sensitive method is described to quantitatively compare tRNA pools for individual aminoacids in a single experiment. The procedure comprises of: (i) charging of total tRNA with a mixture of radiolabeled aminoacids, (ii) deacylation of the esterified tRNA with a volatile base and the recovery of the labeled aminoacid, (iii) derivatisation of the aminoacid with phenylisothiocyanate after mixing with excess of nonradioactive aminoacids, (iv) baseline separation of the phenylthiocarbamyl aminoacids by reverse phase high performance liquid chromatography monitored by A254nm and (v) quantitation of the radioactivity in individual aminoacid peaks. The radioactivity in the aminoacid peak corresponds to the quantity of the aminoacylated tRNA. The method has been successfully applied to quantitate the individual tRNA pools in the developing silk glands of Bombyx mori, a functionally adapted tissue which undergoes considerable variations in tRNA content. PSG, posterior silk gland; PITC, phenylisothiocyanate; DMAA, N,N-dimethyl-N-allylamine; APH, algal protein hydrolysate; ptc-, phenylthiocarbamyl; HPLC, high performance liquid chromatography.
Resumo:
Abstract is not available.
Resumo:
The octameric nucleosomal core-histone complex, (H2A)2-(H2B)2-(H3)2-(H4)2, isolated from rat liver, undergoes dissociation during gel exclusion chromatography as a result of dilution occurring in the columns. The elution pattern at pH 7.0 and 4°C showed a sharp leading peak containing all four histones but predominantly H3 and H4, and a trailing peak containing equal amounts of histones H2A and H2B. As column length was increased the area under the leading peak decreased and that under the trailing peak increased. In addition the relative positions of the two peaks varied with column length. From an analysis of the data on increase in elution volume of the leading peak in relation to column length an apparent molecular weight of 86 000 was calculated for the undissociated molecule. Its apparent molecular weight, histone composition and pattern of further dissociation in relation to column length suggest that this species is the hexamer, (H2A-H2B)-(H3)2-(H4)2. At pH 7.0 and 4°C the dissociation of the core complex appears to be as follows: (H2A)2-(H2B)2-(H3)2-(H4)2 → (H2A-H2B) + (H2A-H2B)-(H3)2-(H4)2 → 2(H2A-H2B) + (H3)2-(H4)2 This dissociation was accelerated by an increase in temperature or decrease in pH and was accompanied by marked conformational changes as judged by circular dichroism measurements.
Resumo:
Haemophilus parasuis is the causative agent of Glässer's disease. Up to now 15 serovars of H. parasuis have been identified, with significant differences existing in virulence between serovars. In this study, suppression subtractive hybridization (SSH) was used to identify the genetic difference between Nagasaki (H. parasuis serovar 5 reference strain, highly virulent) and SW114 (H. parasuis serovar 3 reference strain, non-virulent). A total of 191 clones were obtained from the SSH library. Using dot hybridization and PCR, 15 clones were identified containing fragments that were present in the Nagasaki genome while absent in the SW114 genome. Among these 15 fragments, three fragments (ssh1, ssh13, ssh15) encode cell surface-associated components; three fragments (ssh2, ssh5, ssh9) are associated with metabolism and stress response; one fragment (ssh8) is involved in assembly of fimbria and one fragment (ssh6) is a phage phi-105 ORF25-like protein. The remaining seven fragments are hypothetical proteins or unknown. Based on PCR analysis of the 15 serovar reference strains, eight fragments (ssh1, ssh2, ssh3, ssh6, ssh8, ssh10, ssh11 and ssh12) were found in three to five of most virulent serovars (1, 5, 10, 12, 13 and 14), zero to two in three moderately virulent serovars (2, 4 and 15), but absent in the low virulent serovar (8) and non-virulent serovars (3, 6, 7, 9 and 11). In vivo transcription fragments ssh1, ssh2, ssh8 and ssh12 were identified in total RNA samples extracted from experimental infected pig lung by RT-PCR. This study has provided some evidence of genetic differences between H. parasuis strains of different virulence.
Resumo:
1. Litter samples were collected at the end of the production cycle from spread litter in a single shed from each of 28 farms distributed across the three Eastern seaboard States of Australia. 2. The geometric mean for Salmonella was 44 Most Probable Number (MPN)/g for the 20 positive samples. Five samples were between 100 and 1000 MPN/g and one at 105 MPN/g, indicating a range of factors are contributing to these varying loads of this organism in litter. 3. The geometric mean for Campylobacter was 30 MPN/g for the 10 positive samples, with 7 of these samples being 100 MPN/g. The low prevalence and incidence of Campylobacter were possibly due to the rapid die-off of this organism. 4. E. coli values were markedly higher than the two key pathogens (geometric mean 20 x 105 colony forming units (cfu)/g) with overall values being more or less within the same range across all samples in the trial, suggesting a uniform contribution pattern of these organisms in litter. 5. Listeria monocytogenes was absent in all samples and this organism appears not to be an issue in litter. 6. The dominant (70% of the isolates) Salmonella serovar was S. Sofia (a common serovar isolated from chickens in Australia) and was isolated across all regions. Other major serovars were S. Virchow and S. Chester (at 10%) and S. Bovismorbificans and S. Infantis (at 8%) with these serovars demonstrating a spatial distribution across the major regions tested. 7. There is potential to re-use litter in the environment depending on end use and the support of relevant application practices and guidelines.
Resumo:
Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC) being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10) in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions.
Resumo:
The most common causes of urinary tract infections (UTIs) are Gram-negative pathogens such as Escherichia coli; however, Gram-positive organisms including Streptococcus agalactiae, or group B streptococcus (GBS), also cause UTI. In GBS infection, UTI progresses to cystitis once the bacteria colonize bladder, but the host responses triggered in the bladder immediately following infection are largely unknown. Here, we used genome-wide expression profiling to map the bladder transcriptome of GBS UTI in mice infected transurethrally with uropathogenic GBS that was cultured from a 35 year-old women with cystitis. RNA from bladders was applied to Affymetrix Gene-1.0ST microarrays; qRT-PCR was used to analyze selected gene responses identified in array datasets. A surprisingly small significant gene list of 172 genes was identified at 24h; this compared to 2507 genes identified in a side-by-side comparison with uropathogenic E. coli (UPEC). No genes exhibited significantly altered expression at 2h in GBS-infected mice according to arrays despite high bladder bacterial loads at this early time point. The absence of a marked early host response to GBS juxtaposed with broad-based bladder responses activated by UPEC at 2h. Bioinformatics analyses including integrative systems-level network mapping revealed multiple activated biological pathways in the GBS cystitis transcriptome that regulate leukocyte activation, inflammation, apoptosis, and cytokine-chemokine biosynthesis. These findings define a novel, minimalistic type of bladder host response triggered by GBS UTI, which comprises collective antimicrobial pathways that differ dramatically from those activated by UPEC. Overall, this study emphasizes the unique nature of bladder immune activation mechanisms triggered by distinct uropathogens.
Resumo:
Uropathogenic Escherichia coli is the primary cause of urinary tract infections, which affects over 60% of women during their lifetime. UPEC exhibits a number of virulence traits that facilitate colonization of the bladder, including inhibition of cytokine production by bladder epithelial cells. The goal of this study was to identify the mechanism of this inhibition. We observed that cytokine suppression was associated with rapid cytotoxicity toward epithelial cells. We found that cytotoxicity, cytokine suppression and alpha-hemolysin production were all tightly linked in clinical isolates. We screened a UPEC fosmid library and identified clones that gained the cytotoxicity and cytokine-suppression phenotypes. Both clones contained fosmids encoding a PAI II(J96)-like domain and expressed the alpha-hemolysin (hlyA) encoded therein. Mutation of the fosmid-encoded hly operon abolished cytotoxicity and cytokine suppression. Similarly, mutation of the chromosomal hlyCABD operon of UPEC isolate F11 also abolished these phenotypes, and they could be restored by introducing the PAI II(J96)-like domain-encoding fosmid. We also examined the role of alpha-hemolysin in cytokine production both in the murine UTI model as well as patient specimens. We conclude that E. coli utilizes alpha-hemolysin to inhibit epithelial cytokine production in vitro. Its contribution to inflammation during infection requires further study.
Resumo:
35S incorporation studies showed that Candida tropicalis tRNA contained two thionucleosides, one of which was identified as 5-methyl-2-thiouridine. The other thionucleoside was alkali labile, and it appeared to be an ester. Pulse-chase experiments suggested that the two thionucleosides were structurally related. 5-Methyl-2-thiouridine was present in one of the lysine tRNAs. This is the first report of the presence of this nucleoside in a yeast tRNA.
Resumo:
The presence of 1-methyl adenine in transfer RNA is a feature that Mycobacterium smegmatis shares with only a few other prokaryotes. The enzyme 1-methyl adenine tRNA methyl transferase from this source has been purified and the preliminary results show the presence of two activity peaks with different substrate specificity.
Resumo:
beta-Lactamase from Mycobacterium smegmatis SN2 was purified to homogeneity. The molecular weight of the enzyme was 30,000 and the isoelectric point was 4.1. The enzyme showed maximal activity at pH 6.5 and 56~ and resembled the plasmid-mediated TEM-type beta-lactamases commonly encountered in gram-negative bacteria in substrate profile. The enzyme shared antigenic structure with beta-1actamase from Mycobacterium butyricum ATCC 19979 and Escherichia coli HB101 (pBR322).
Resumo:
Certain recent models of sex determination in mammals, Drosophila melanogaster, Caenorhabditis elegans, and snakes are examined in the light of the hypothesis that the relevant genetic regulatory mechanisms are similar and interrelated. The proposed key element in each of these instances is a noncoding DNA sequence, which serves as a high-affinity binding site for a repressor-like molecule regulating the activity of a major "sex-determining" gene. On this basis it is argued that, in several eukaryotes, (i) certain DNA sequences that are sex-determining are noncoding, in the sense that they are not the structural genes of a sex-determining protein; (ii) in some species these noncoding sequences are present in one sex and absent in the other, while in others their copy number or accessibility to regulatory molecules is significantly unequal between the two sexes; and (iii) this inequality determines whether the embryo develops into a male or a female.
Resumo:
Provision of food industry development advice, guidance, and NATA microbiological testing service to the North Queensland food industry in 2008/2009.
Resumo:
To test the robustness and validity of our prototype LPS-specific multiplex PCR on P. multocida field isolates and develop the PCR into a diagnostic test capable of accurately and reliably typing P. multocida strains.