998 resultados para Charge sensitive preamplifier
Resumo:
The charge transport mechanism of oligo(p-phenylene ethynylene)s with lengths ranging from 0.98 to 5.11 nm was investigated using modified scanning tunneling microscopy break junction and conducting probe atomic force microscopy methods. The methods were based on observing the length dependence of molecular resistance at single molecule level and the current-voltage characteristics in a wide length distribution. An intrinsic transition from tunneling to hopping charge transport mechanism was observed near 2.75 nm. A new transitional zone was observed in the long length molecular wires compared to short ones. This was not a simple transition between direct tunneling and field emission, which may provide new insights into transport mechanism investigations. Theoretical calculations provided an essential explanation for these phenomena in terms of molecular electronic structures.
Resumo:
We report a new fluorescent detection method for cysteine based on one-step prepared fluorescent conjugated polymer-stabilized gold nanoparticles. The as-prepared fluorescent conjugated polymer-stabilized gold nanoparticles fluoresce weakly due to the fluorescence resonance energy transfer between the fluorophore and the gold nanoparticles. Upon the addition of cysteine, a thiol-containing amino acid, the fluorescence of the colloidal solution increases significantly, indicating that cysteine can modulate the energy transfer between fluorophore and gold. This phenomenon then allows for sensitive detection of cysteine with a limit of detection (LOD) of 25 nM. The linear range of determination of cysteine is from 5 x 10(-8) to 4 x 10(-6) M. None of the other amino acids found in proteins interferes with the determination. Moreover, due to the excellent protecting ability of the fluorescent conjugated polymers, the synthesis of metal nanoparticles and modifying with fluorophores can be accomplished within one step, which makes our method much simpler than conventional methods. We also expect that it will be possible to detect other biologically important analytes based on the fluorescent conjugated polymer-stabilized metal nanoparticles.
Resumo:
We report here a novel AMP biosensor based on the aptamer-induced disassembly of fluorescent and magnetic nano-silica sandwich complexes with a direct detection limit of 0.1 mu M.
Resumo:
We have demonstrated a smart polymeric transducer and aptamer/intercalating dye system that allows the label-free detection of protein with high sensitivity and selectivity.
Resumo:
A series of Pr0.55Ca0.45MnO3 compounds with average particle size ranging from 2000 to 30 nm have been synthesized by the sol-gel method and their charge ordering (CO) and magnetic properties are investigated. It is observed that with particle size decreasing, the CO transition is gradually suppressed and finally disappears upon particle size down to 35 nm, while the ferromagnetism (FM) emerges and exhibits a nonmonotonous variation with a maximum at 45 nm samples. The FM components in all samples never reach long-range ordering but rather only show short-range clusters. A new explanation considering the coupling between lattice, charge, and spin in the system is raised to understand the suppression of the CO state, Both the competition between the CO/AFM and FM states and the core-shell model are employed to explain the variation of the FM phase. These results may provide a deeper insight into the physics of particle size effect on the charge ordering manganite.
Resumo:
First-principles calculations using the APW+lo method, as implemented in the WIEN2K code, have been used to investigate the structural, electronic, and magnetic properties of the perovskite CaCu3Fe4O12, including the high-temperature Im-3 and low-temperature Pn-3 phase. The high-temperature phase presents a homogeneous valence and an orbital degenerate half-metallic behavior, which is consistent with the previous theoretical result. Instead orbital ordering, charge ordering, or disproportionation on Fe sites occur in the low-temperature phase, leading to the insulating character. More importantly, the charge disproportionation is of 2d(5)L -> d(5)L(2) + d(5) type (where L denotes an oxygen hole or a ligand hole), and the origin for the phenomenon is discussed in detail.
Resumo:
Label free electrochemiluminescence (ECL) DNA detection based on catalytic guanine and adenine bases oxidation using tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)(3)(2+)] modified glassy carbon (GC) electrode was demonstrated in this work. The modified GC electrode was prepared by casting carbon nanotubes (CNT)/Nafion/Ru(bpy)(3)(2+) composite film on the electrode surface. ECL signals of doublestranded DNA and their thermally denatured counterparts can be distinctly discriminated using cyclic voltammetry (CV) with a low concentration (3.04 x 10(-8) mol/L for Salmon Testes-DNA). Most importantly, sensitive single-base mismatch detection of p53 gene sequence segment was realized with 3.93 x 10(-10) mol/L employing CV stimulation (ECL signal of C/A mismatched DNA oligonucleotides was 1.5-fold higher than that of fully base-paired DNA oligonucleotides). Label free, high sensitivity and simplicity for single-base mismatch discrimination were the main advantages of the present ECL technique for DNA detection over the traditional DNA sensors.
Resumo:
A simple, large scale, and one-step process for the preparation of tris(2,2'-bipyridyl)ruthenium(I) (Ru(bpy)(3)(2+)) doped SiO2@carbon nanotubes (MVNTs) coaxial nanocable used for an ultrasensitive electrochemiluminescence (ECL) is presented for the first time. More importantly, a directly coated as-formed functional material on ITO electrode surface exhibits excellent ECL behavior, good stability, and high sensitivity in the presence of tripropylamine (TPA). This novel functional material will find potential applications in biosensor, electrophoresis and electroanalysis.
Resumo:
We report an aptamer-based method for the sensitive detection of proteins by a label-free fluorescing molecular switch (ethidium bromide), which shows promising potential in making protein assay simple and economical.
Resumo:
We describe herein simple and sensitive aptamer-based colorimetric sensing of protein (alpha-thrombin in this work) using unmodified gold nanoparticle probes.
Resumo:
We report a sensitive electrochemical aptasensor for adenosine based on electrochemical impedance spectroscopy measurement, which gives not only a label-free but also a reusable platform to make the detection of small molecules simple and convenient.
Resumo:
We initially report an electrochemical sensing platform based on molecularly imprinted polymers (MIPs) at functionalized Indium Tin Oxide Electrodes (ITO). In this research, aminopropyl-derivatized organosilane aminopropyltriethoxysilane (APTES), which plays the role of functional monomers for template recognition, was firstly self-assembled on an ITO electrode and then dopamine-imprinted sol was spin-coated on the modified surface. APTES which can interact with template dopamine (DA) through hydrogen bonds brought more binding sites located closely to the surface of the ITO electrode, thus made the prepared sensor more sensitive for DA detection. Potential scanning is presented to extract DA from the modified film, thus DA can rapidly and completely leach out. The affinity and selectivity of the resulting biomimetic sensor were characterized using cyclic voltammetry (CV). It exhibited an increased affinity for DA over that of structurally related molecules, the anodic current for DA oxidation depended on the concentration of DA in the linear range from 2 x 10(-6) M to 0.8 x 10(-3) M with a correlation coefficient of 0.9927.In contrast, DA-templated film prepared under identical conditions on a bare ITO showed obviously lower response toward dopamine in solution.