944 resultados para Cauchy singular integral-equation
Resumo:
This paper is focused on the study of the important property of the asymptotic hyperstability of a class of continuous-time dynamic systems. The presence of a parallel connection of a strictly stable subsystem to an asymptotically hyperstable one in the feed-forward loop is allowed while it has also admitted the generation of a finite or infinite number of impulsive control actions which can be combined with a general form of nonimpulsive controls. The asymptotic hyperstability property is guaranteed under a set of sufficiency-type conditions for the impulsive controls.
Resumo:
157 p.
Resumo:
2nd International Conference on Education and New Learning Technologies
Resumo:
The effects of complex boundary conditions on flows are represented by a volume force in the immersed boundary methods. The problem with this representation is that the volume force exhibits non-physical oscillations in moving boundary simulations. A smoothing technique for discrete delta functions has been developed in this paper to suppress the non-physical oscillations in the volume forces. We have found that the non-physical oscillations are mainly due to the fact that the derivatives of the regular discrete delta functions do not satisfy certain moment conditions. It has been shown that the smoothed discrete delta functions constructed in this paper have one-order higher derivative than the regular ones. Moreover, not only the smoothed discrete delta functions satisfy the first two discrete moment conditions, but also their derivatives satisfy one-order higher moment condition than the regular ones. The smoothed discrete delta functions are tested by three test cases: a one-dimensional heat equation with a moving singular force, a two-dimensional flow past an oscillating cylinder, and the vortex-induced vibration of a cylinder. The numerical examples in these cases demonstrate that the smoothed discrete delta functions can effectively suppress the non-physical oscillations in the volume forces and improve the accuracy of the immersed boundary method with direct forcing in moving boundary simulations.
Resumo:
420 p.
Resumo:
We consider the radially symmetric nonlinear von Kármán plate equations for circular or annular plates in the limit of small thickness. The loads on the plate consist of a radially symmetric pressure load and a uniform edge load. The dependence of the steady states on the edge load and thickness is studied using asymptotics as well as numerical calculations. The von Kármán plate equations are a singular perturbation of the Fӧppl membrane equation in the asymptotic limit of small thickness. We study the role of compressive membrane solutions in the small thickness asymptotic behavior of the plate solutions.
We give evidence for the existence of a singular compressive solution for the circular membrane and show by a singular perturbation expansion that the nonsingular compressive solution approach this singular solution as the radial stress at the center of the plate vanishes. In this limit, an infinite number of folds occur with respect to the edge load. Similar behavior is observed for the annular membrane with zero edge load at the inner radius in the limit as the circumferential stress vanishes.
We develop multiscale expansions, which are asymptotic to members of this family for plates with edges that are elastically supported against rotation. At some thicknesses this approximation breaks down and a boundary layer appears at the center of the plate. In the limit of small normal load, the points of breakdown approach the bifurcation points corresponding to buckling of the nondeflected state. A uniform asymptotic expansion for small thickness combining the boundary layer with a multiscale approximation of the outer solution is developed for this case. These approximations complement the well known boundary layer expansions based on tensile membrane solutions in describing the bending and stretching of thin plates. The approximation becomes inconsistent as the clamped state is approached by increasing the resistance against rotation at the edge. We prove that such an expansion for the clamped circular plate cannot exist unless the pressure load is self-equilibrating.
Resumo:
I. Existence and Structure of Bifurcation Branches
The problem of bifurcation is formulated as an operator equation in a Banach space, depending on relevant control parameters, say of the form G(u,λ) = 0. If dimN(G_u(u_O,λ_O)) = m the method of Lyapunov-Schmidt reduces the problem to the solution of m algebraic equations. The possible structure of these equations and the various types of solution behaviour are discussed. The equations are normally derived under the assumption that G^O_λεR(G^O_u). It is shown, however, that if G^O_λεR(G^O_u) then bifurcation still may occur and the local structure of such branches is determined. A new and compact proof of the existence of multiple bifurcation is derived. The linearized stability near simple bifurcation and "normal" limit points is then indicated.
II. Constructive Techniques for the Generation of Solution Branches
A method is described in which the dependence of the solution arc on a naturally occurring parameter is replaced by the dependence on a form of pseudo-arclength. This results in continuation procedures through regular and "normal" limit points. In the neighborhood of bifurcation points, however, the associated linear operator is nearly singular causing difficulty in the convergence of continuation methods. A study of the approach to singularity of this operator yields convergence proofs for an iterative method for determining the solution arc in the neighborhood of a simple bifurcation point. As a result of these considerations, a new constructive proof of bifurcation is determined.
Resumo:
A model equation for water waves has been suggested by Whitham to study, qualitatively at least, the different kinds of breaking. This is an integro-differential equation which combines a typical nonlinear convection term with an integral for the dispersive effects and is of independent mathematical interest. For an approximate kernel of the form e^(-b|x|) it is shown first that solitary waves have a maximum height with sharp crests and secondly that waves which are sufficiently asymmetric break into "bores." The second part applies to a wide class of bounded kernels, but the kernel giving the correct dispersion effects of water waves has a square root singularity and the present argument does not go through. Nevertheless the possibility of the two kinds of breaking in such integro-differential equations is demonstrated.
Difficulties arise in finding variational principles for continuum mechanics problems in the Eulerian (field) description. The reason is found to be that continuum equations in the original field variables lack a mathematical "self-adjointness" property which is necessary for Euler equations. This is a feature of the Eulerian description and occurs in non-dissipative problems which have variational principles for their Lagrangian description. To overcome this difficulty a "potential representation" approach is used which consists of transforming to new (Eulerian) variables whose equations are self-adjoint. The transformations to the velocity potential or stream function in fluids or the scaler and vector potentials in electromagnetism often lead to variational principles in this way. As yet no general procedure is available for finding suitable transformations. Existing variational principles for the inviscid fluid equations in the Eulerian description are reviewed and some ideas on the form of the appropriate transformations and Lagrangians for fluid problems are obtained. These ideas are developed in a series of examples which include finding variational principles for Rossby waves and for the internal waves of a stratified fluid.
Resumo:
In Part I a class of linear boundary value problems is considered which is a simple model of boundary layer theory. The effect of zeros and singularities of the coefficients of the equations at the point where the boundary layer occurs is considered. The usual boundary layer techniques are still applicable in some cases and are used to derive uniform asymptotic expansions. In other cases it is shown that the inner and outer expansions do not overlap due to the presence of a turning point outside the boundary layer. The region near the turning point is described by a two-variable expansion. In these cases a related initial value problem is solved and then used to show formally that for the boundary value problem either a solution exists, except for a discrete set of eigenvalues, whose asymptotic behaviour is found, or the solution is non-unique. A proof is given of the validity of the two-variable expansion; in a special case this proof also demonstrates the validity of the inner and outer expansions.
Nonlinear dispersive wave equations which are governed by variational principles are considered in Part II. It is shown that the averaged Lagrangian variational principle is in fact exact. This result is used to construct perturbation schemes to enable higher order terms in the equations for the slowly varying quantities to be calculated. A simple scheme applicable to linear or near-linear equations is first derived. The specific form of the first order correction terms is derived for several examples. The stability of constant solutions to these equations is considered and it is shown that the correction terms lead to the instability cut-off found by Benjamin. A general stability criterion is given which explicitly demonstrates the conditions under which this cut-off occurs. The corrected set of equations are nonlinear dispersive equations and their stationary solutions are investigated. A more sophisticated scheme is developed for fully nonlinear equations by using an extension of the Hamiltonian formalism recently introduced by Whitham. Finally the averaged Lagrangian technique is extended to treat slowly varying multiply-periodic solutions. The adiabatic invariants for a separable mechanical system are derived by this method.